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Abstract

Reinforcement learning (RL; Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1995) is a

general and powerful framework with which to study and implement artificial intelligence

(AI; Russell and Norvig, 2010). Recent advances in deep learning (Schmidhuber, 2015)

have enabled RL algorithms to achieve impressive performance in restricted domains such

as playing Atari video games (Mnih et al., 2015) and, recently, the board game Go (Silver

et al., 2016). However, we are still far from constructing a generally intelligent agent.

Many of the obstacles and open questions are conceptual: What does it mean to be

intelligent? How does one explore and learn optimally in general, unknown environments?

What, in fact, does it mean to be optimal in the general sense?

The universal Bayesian agent AIXI (Hutter, 2000, 2003, 2005) is a model of a maximally

intelligent agent, and plays a central role in the sub-field of general reinforcement learning

(GRL). Recently, AIXI has been shown to be flawed in important ways; it doesn’t explore

enough to be asymptotically optimal (Orseau, 2010), and it can perform poorly with

certain priors (Leike and Hutter, 2015). Several variants of AIXI have been proposed

to attempt to address these shortfalls: among them are entropy-seeking agents (Orseau,

2011), knowledge-seeking agents (Orseau et al., 2013), Bayes with bursts of exploration

(Lattimore, 2013), MDL agents (Leike, 2016a), Thompson sampling (Leike et al., 2016),

and optimism (Sunehag and Hutter, 2015).

We present AIXIjs, a JavaScript implementation of these GRL agents. This implemen-

tation is accompanied by a framework for running experiments against various environ-

ments, similar to OpenAI Gym (Brockman et al., 2016), and a suite of interactive demos

that explore different properties of the agents, similar to REINFORCEjs (Karpathy, 2015).

We use AIXIjs to present numerous experiments illustrating fundamental properties of,

and differences between, these agents. As far we are aware, these are the first experiments

comparing the behavior of GRL agents in non-trivial settings.

Our aim is for this software and accompanying documentation to serve several pur-

poses:

1. to help introduce newcomers to the field of general reinforcement learning,

2. to provide researchers with the means to demonstrate new theoretical results relating

to universal AI at conferences and workshops,

3. to serve as a platform with which to run empirical studies on AIXI variants in small

environments, and

4. to serve as an open-source reference implementation of these agents.

Keywords: Reinforcement learning, AIXI, Knowledge-seeking agents, Thompson sam-

pling.
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Chapter 1

Introduction

Who could have imagined, ever so long ago, what minds would someday do? 1

What a time to be alive! The field of artificial intelligence (AI) seems to be coming

of age, with many predicting that the field is set to revolutionize science and industry

(Holdren et al., 2016), and some predicting that it may soon usher in a posthuman civ-

ilization (Vinge, 1993; Kurzweil, 2005; Bostrom, 2014). While the field has notoriously

over-promised and under-delivered in the past (Moravec, 1988; Miller et al., 2009), there

now seems to be a growing body of evidence in favor of optimism. Algorithms and ideas

that have been developed over the past thirty years or so are being applied with significant

success in numerous domains; natural language processing, image recognition, medical di-

agonosis, robotics, and many more (Russell and Norvig, 2010). This recent success can be

largely attributed to the availability of large datasets, cheaper computing power2, and the

development of open-source scientific software3. As a result, the gradient of scientific and

engineering progress in these fields is very steep, and seemingly steepening every year. The

past half-decade in particular has seen an acceleration in funding and interest, primarily

driven by advances in the field of statistical machine learning (SML; Bishop, 2006; Hastie

et al., 2009), and in particular, the growing sub-field of deep learning with neural networks

(Schmidhuber, 2015; LeCun et al., 2015).

Machine learning

Machine learning (ML) can be thought of as a process of automated hypothesis gener-

ation and testing. ML is typically framed in terms of passive tasks such as regression,

classification, prediction, and clustering. In the most common supervised learning setup,

a system observes data sampled i.i.d. from some generative process ρ (x, y), where x is

some object, for example an image, audio signal, or document, and y is (in the context of

classification) a label. A typical machine learning task is to correctly predict y, given a (in

general, previously unseen) datum x sampled from ρ (x). This often involves constructing

a model p (y|x, θ) parametrized by θ. The system is said to learn from data by tuning the

model parameters θ so as to minimize the risk, which is the ρ-expectation of some loss

function L
Eρ
[
L
(
x, y, y′

)]
, (1.1)

1This, and all subsequent chapter quotes, are taken from Rationality: From AI to Zombies (Yudkowsky,
2015).

2In particular, and of particular relevance to machine learning with neural networks, the hardware
acceleration due to Graphical Processing Units (GPUs).

3For example, scikit− learn (Pedregosa et al., 2011), Theano (Al-Rfou et al., 2016), Caffe (Jia et al.,
2014), and TensorFlow (Abadi et al., 2015), along with many others.

1
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where L is constructed in such a way as to penalize prediction error Bishop (2006);

Hastie et al. (2009); Murphy (2012). High profile breakthroughs of statistical machine

learning include image recognition (Szegedy et al., 2015), voice recognition (Sak et al.,

2015), synthesis (van den Oord et al., 2016), and machine translation (Al-Rfou et al.,

2016). Many more examples exist, in diverse fields such as fraud detection (Phua et al.,

2010) and bioinformatics (Libbrecht and Noble, 2015). Informally, these systems might

be called ‘intelligent’, insofar as they learn an accurate model of (some part of) the world

that generalizes well to unseen data. We refer to these learning systems as narrow AI;

they are narrow in two senses:

1. They are typically applicable only within a narrow domain; a neural network trained

to recognize cats cannot play chess or reason about climate data.

2. They are able to solve only passive tasks, or active tasks in a restricted setting.

In contrast, the goal of general artificial intelligence can be described (informally) as

designing and implementing an agent that learns from, and interacts with, its environment,

and eventually learns to (vastly) outperform humans in any given task (Legg, 2008; Müller

and Bostrom, 2016).

Artificial intelligence

Constructing an artificial general intelligence (AGI) has been one of the central goals of

computer science, since the beginnings of the discipline (McCarthy et al., 1955). The field

of hard, or general AI has infamously had a history of overpromising and under-delivering,

virtually since its birth (Moor, 2006; Miller et al., 2009). Despite this, the recent success

of machine learning has inspired a new generation of researchers to approach the problem,

and there is a considerable amount of investment being made in the field, most notably by

large technology companies: Facebook AI Research, Google Brain, OpenAI and DeepMind

are some high profile examples; the latter has made the scope of its ambitions explicit by

stating that its goal is to ‘solve intelligence’.

The framework of choice for most researchers working in pursuit of AGI is called rein-

forcement learning (RL; Sutton and Barto, 1998). The current state-of-the-art algorithms

combine the relatively simple Q-learning (Watkins and Dayan, 1992) with deep convo-

lutional neural networks to form the so-called deep Q-networks (DQN) algorithm (Mnih

et al., 2013) to learn effective policies on large state-space Markov decision processes. This

combination has seen significant success at autonomously learning to play games, which

are widely considered to be a rich testing ground for developing and testing AI algorithms.

Some recent successes using systems based on this technique include achieving human-

level performance at numerous Atari-2600 video games (Mnih et al., 2015), super-human

performance at the board game Go (Silver et al., 2016; Google, 2016), and super-human

performance at the first-person shooter Doom (Lample and Chaplot, 2016). This has

inspired a whole sub-field called deep reinforcement learning, which is moving quickly and

generating many publications and software implementations.

While this is all very impressive, these are primarily engineering successes, rather

than scientific ones. The fundamental ideas and algorithms used in DQN date from the

early nineties; Q-learning is due to Watkins and Dayan (1992), and convolutional neural

networks and deep learning are usually attributed to LeCun and Bengio (1995). Arguably,

the scientific breakthroughs necessary for AGI are yet to be made, and are still some way

https://research.facebook.com/ai/
http://research.google.com/teams/brain/
https://openai.com
https://deepmind.com
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off. In fact, when one considers the problem of learning and acting in general environments,

there are still many open foundational problems (Hutter, 2009): What is a good formal

definition of intelligent or rational behavior? What is a good notion of optimality with

which to compare different algorithms? These are conceptual and theoretical questions

which must be addressed by any useful theory of AGI.

General reinforcement learning

One proposed answer to the first of these questions is the famous AIXI model, which is

a parameter-free (up to a choice of prior) and general model of unbounded rationality

in unknown environments (Hutter, 2000, 2002, 2005). AIXI is formulated as a Bayesian

reinforcement learner, and makes few assumptions about the nature of its environment;

notably, when studying AIXI we lift the ubiquitous Markov assumption on which algo-

rithms like Q-learning depend for convergence (Sutton and Barto, 1998). Because of this

important distinction, we refer to AIXI as a general reinforcement learning4 (GRL) agent

(Lattimore et al., 2013).

Recently, there have been a number of key negative results proven about AIXI; namely

that it isn’t asymptotically optimal (Orseau, 2010, 2013) – a concept we will formally in-

troduce in Chapter 2 – and it can be made to perform poorly with certain priors (Leike

and Hutter, 2015). These results have motivated, in part, the development of alternative

GRL agents: entropy-seeking agents (Orseau, 2011), optimistic AIXI Sunehag and Hut-

ter (2012), knowledge-seeking agents (Orseau et al., 2013), minimum description length

agents (Lattimore, 2013), Bayes with exploration (Lattimore, 2013; Lattimore and Hutter,

2014b), and Thompson sampling (Leike et al., 2016).

Numerous results (positive and negative) have been proven about this family of uni-

versal Bayesian agents; together they form a corpus that is of considerable significance

to the AGI problem. With the exception of AIXI, many of these agents (and their as-

sociated properties) are relatively obscure. We argue that as AI research continues, the

theoretical underpinnings of GRL will rise in importance, and these ideas and models will

serve as useful guiding principles for practical algorithms. This motivates us to create

an open-source web demo of AIXI and its variants, to help in the presentation of these

agents to the AI community generally, and to serve as a platform for experimentation and

demonstration of deep results relating to rationality and intelligence.

Web demos

With increasing computing power, and the maturation of the JavaScript programming

language, web browsers have become a feasible platform on which to run increasingly

complex and computationally intensive software. JavaScript, in its modern incarnations,

is stable, portable, expressive, and, with engines like WebGL and V8, highly performant;

see Figure 1.1 and Figure 1.2 for examples. Thanks to this, and the popular d3js visual-

ization library, there are now a growing number of excellent open source machine learning

web demos available online. Representative examples include Keras-js, a demo of very

large convolutional neural networks (Chen, 2016); TensorFlow Playground, a highly in-

teractive demo designed to give intuition for how neural networks classify data (Smilkov

4Elsewhere in the literature – most prominently by Hutter (2005) and Orseau (2011) – the term universal
AI is used.

https://www.chromeexperiments.com/webgl
https://developers.google.com/v8/
http://d3js.org
https://transcranial.github.io/keras-js
http://playground.tensorflow.org/
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Figure 1.1: Open-source examples of real-time GPU-accelerated particle simulations run natively

in Google Chrome, using JavaScript and WebGL. Left: ParticulateJS. Right: Polygon Shredder.

Figure 1.2: Open-source examples of visualizations made with d3js. Left: Chord plot for data

visualization (Bostock, 2016). Right: Visualization of the WaterWorld reinforcement learning

environment (Karpathy, 2015).

and Carter, 2016); a demo to illustrate the pitfalls and common misunderstandings when

using the t-SNE dimensionality reduction technique (Wattenberg et al., 2016), and Andrej

Karpathy’s excellent reinforcement learning demo REINFORCEjs, that demonstrates the

DQN algorithm (Karpathy, 2015).

Arguably, these demos have immense value to the community, as they serve at once as

reviews of recent research, pedagogic aides, and as accessible reference implementations

for developers. They are also effective marketing for the techniques or approaches being

demonstrated, and the people producing them. We now describe the objectives of this

project.

Objective

This thesis is about understanding existing theoretical results relating to GRL agents,

implementing these agents, and communicating these properties via an interactive software

demo. In particular, the demo should:

• be portable, i.e. runnable on any computer with a modern web browser and internet

connection,

• be general and extensible, so as to support a wide range of agents and environments,

https://github.com/jpweeks/particulate-js
https://github.com/spite/polygon-shredder
http://d3js.org
http://distill.pub/2016/misread-tsne/
http://cs.stanford.edu/people/karpathy/reinforcejs/
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• be modular, so as to facillitate future development and improvement, and

• be performant, so that users can run non-trivial simulations in a reasonable amount

of time.

The demo will consist of:

• implementations of the agents and their associated modules (planners, environment

models),

• a suite of small environments on which to demonstrate properties of the agents,

• a user interface (UI) that provides the user control over agent and environment

parameters,

• a visualization interface that allows the user to playback the agent-environment

simulation, and

• a suite of explanations, one accompanying each demo, to explain what the user is

seeing.

In particular, the demo should serve three purposes:

• as a helpful introduction to the theory of general reinforcement learning, for both

students and researchers; in this regard, we follow the model of REINFORCEjs

(Karpathy, 2015);

• as a platform for researchers in this area to develop and run experiments to accom-

pany their theoretical results, and to help present their findings to the community;

in this aspect, we follow the model of OpenAI Gym (Brockman et al., 2016);

• and as an open-source reference implementation for many of the general reinforce-

ment learning agents.

Contribution

In this work, we present:

• a review of the general reinforcement learning literature of Hutter, Lattimore, Sune-

hag, Orseau, Legg, Leike, Ring, Everitt, and others. We present the agents and

results under a unified notation and with added conceptual clarifications. As far as

we are aware, this is the only document in which agents and algorithms from the

GRL literature are presented as a collection.

• an applied perspective on Bayesian agents and mixture models with insights into

MCTS planning and modelling errors,

• an open-source JavaScript reference implementation of many of the agents,

• experimental data that validates and illustrates several theoretical results, and

• an extensible and general framework with which researchers can run experiments

and demos on reinforcement learning agents in the browser.

http://cs.stanford.edu/people/karpathy/reinforcejs/
https://gym.openai.com
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The software itself is found at http://aslanides.github.io/aixijs, and can be run in the

browser on any operating system. Note that different browsers have differing implementa-

tions of the JavaScript specification; we strongly recommend running the demo on Google

Chrome5, as we didn’t test the implementation on other browsers.

Thesis Outline

In Chapter 2 (Background) we present the theoretical framework for general reinforcement

learning, introduce the agent zoo, and present the basic optimality results. In Chapter 3

(Implementation) we document the design and implementation of the software itself. In

Chapter 4 (Experiments) we outline the experimental results we obtained using the soft-

ware. Chapter 5 (Conclusion) makes some concluding remarks, and points out potential

directions for further work.

We expect that this thesis will typically be read in soft copy, i.e. digitally, through a

PDF viewer. For this reason, we augment this thesis throughout with hyperlinks, for the

reader’s convenience. These are used in three ways:

• on citations, so as to link to the corresponding bibliography entry,

• on cross-references, so as to link to the appropriate page in this thesis,6 or

• as external hyperlinks, to link the interested reader to an internet web page.

In particular, we encourage the reader to use the cross-references to jump around the text.

5https://www.google.com.au/chrome/browser/desktop/
6After following a link, the reader can return to where they were previously, using (usually) Alt +

on Windows or Linux, and + [ (in Preview) or + (in Acrobat) on Mac OS.

http://aslanides.github.io/aixijs
https://www.google.com.au/chrome/browser/desktop/
https://www.google.com.au/chrome/browser/desktop/
https://www.google.com.au/chrome/browser/desktop/


Chapter 2

Background

“Where will an Artificial Intelligence get money?” they ask, as if the first Homo

sapiens had found dollar bills fluttering down from the sky, and used them at

convenience stores already in the forest.

In this Chapter we present a brief background on reinforcement learning, with a focus on

the problem of general reinforcement learning (GRL). Our objective is for this chapter to

be relatively accessible. To this end, we try to aim for conceptual clarity and conciseness

over technical details and mathematical rigor. For a more complete and rigorous treatment

of GRL, we refer the reader to the excellent PhD theses of Leike (2016a) and Lattimore

(2013), and of course to the seminal book, Universal Artificial Intelligence by Hutter

(2005).

The Chapter is laid out as follows: In Section 2.1 (Preliminaries), we introduce some

notation and basic concepts. In Section 2.2 (Reinforcement Learning), we introduce the

reinforcement learning problem in its most general setting. In Section 2.3 (General Re-

inforcement Learning) we introduce the Bayesian general reinforcement learner AIXI and

its relatives, the implementation and experimental study of which forms the bulk of this

thesis. We draw the GRL literature together and present these agents under a unified

notation. In Section 2.4 (Planning) we discuss approaches to the problem of planning in

general environments. We conclude with some remarks and a short summary in Section

2.5 (Remarks).

2.1 Preliminaries

We briefly introduce some of the tools and concepts that are used to reason about the

general reinforcement learning (GRL) problem. We assume that the reader has a basic

familiarity with the concepts of probability, information theory, and statistics, and ideally

some exposure to standard concepts in artificial intelligence (e.g. breadth-first search,

expectimax, minimax), and reinforcement learning (e.g. Q-learning, bandits). For some

general background, we refer the reader to MacKay (2002) for probability and information

theory, Bishop (2006) for machine learning and statistics, Russell and Norvig (2010) for

artificial intelligence, and Sutton and Barto (1998) for reinforcement learning.

2.1.1 Notation

Numbers and vectors. The set N .
= {1, 2, 3, . . . } is the set of natural numbers, and

R denotes the reals. We use R+ = [0,∞) and R++ = (0,∞). A set is countable if it

can be brought into bijection with a subset (finite or otherwise) of N, and is uncountable

7



8 Background

otherwise. We use RK to denote the K-dimensional vector space over R. We represent

vectors with bold face: x is a vector, and xi is its ith component. We (reluctantly1)

represent inner products with the standard notation for engineering and computer science:

given x,y ∈ RK , xTy =
∑K

i=1 xiyi.

Strings and sequences. Define a finite, nonempty set of symbols X , which we call

an alphabet. The set X n with n ∈ N is the set of all strings over X with length n, and

X ∗ = ∪n∈NX n is the set of all finite strings over X . X∞ is the set of infinite strings over

X , and X# = X ∗ ∪X∞ is their union. The empty string is denoted by ε; this is not to be

confused with the small positive number ε. For any string x ∈ X#, we denote its length

by |x|.
For any string x with |x| ≥ k, xk is the kth symbol of x, x1:k is the first k symbols

of x, and x<k is the first k − 1 symbols of x. We often make use of the binary alphabet

B = {0, 1}. For two finite strings x, y ∈ X ∗ we denote their concatenation by xy. For two

finite strings a, e ∈ X n of length n, it will be convenient to write æ to indicate the riffled

string a1e1a2e2 . . . anen; we slightly overload our indexing notation by stipulating that for

k ≤ n, æ1:k = a1e1, . . . , akek, and similarly for æ<k.

Miscellaneous. We use
.

= to mean ‘is defined as’, and we use the convention that log

is the logarithm base two and ln is the natural logarithm. We usually, but not always, refer

to random variables in upper case. The indicator function I [P ] returns 1 if the predicate P

is true and 0 otherwise. We use→ and to denote deterministic and stochastic mappings

respectively.

2.1.2 Probability theory

For our purposes, we will only be working with discrete event spaces, and so we will

omit the machinery of measure theory, which is needed to treat probability theory over

continuous spaces. Given a sample space Ω, we construct an event space F as a σ-algebra

on Ω: a set of subsets of Ω that is closed under countable unions and complements; for

discrete distributions, this is simply the power set 2Ω. A random variable X is discrete if its

associated sample space ΩX is countable; we associate with it a probability mass function

p : ΩX → [0, 1]. If X is continuous, provided ΩX is measurable, we can associate with

it a probability density function R→ R+. For a countable set Ω, we use ∆Ω to represent

the set of all probability distributions over Ω. We use E [X]
.

=
∑

x∈ΩX
xp (x) (or, in

the continuous setting, E [X] =
∫
X xp (x) dx) to represent the expectation of the random

variable X. In many cases we will emphasize for clarity that X is distributed according to

p by writing the expectation as Ep [X]. We say x ∼ ρ (·) to mean that x is sampled from

the distribution ρ.

The two fundamental results of probability theory are the sum and product rules:

p (a) =
∑
b∈ΩB

p (a, b) (2.1)

p (a, b) = p (a|b) p (b) , (2.2)

from which we immediately get Bayes’ rule, which plays a central role in the theory of

rationality and intelligence (Hutter, 2000).

1The author greatly favors using the Einstein notation for its power and clarity.

https://en.wikipedia.org/wiki/Einstein_notation
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Theorem 1 (Bayes’ rule). Bayes’ rule is given by the following identity:

posterior︷ ︸︸ ︷
Pr (A|B) =

likelihood︷ ︸︸ ︷
Pr (B|A)

prior︷ ︸︸ ︷
Pr (A)

Pr (B)︸ ︷︷ ︸
predictive distribution

(2.3)

=
Pr (B|A) Pr (A)∑
a∈ΩA

Pr (B|a) Pr (a)
.

Note that Bayes’ rule follows from the fact that the product rule is symmetric in

its arguments: p (a|b) p (b) = p (b|a) p (a). Its power and significance comes through its

interpretation as a sequential updating scheme for subjective beliefs about hypotheses;

we annotate Equation (2.3) with this interpretation, which we discuss below. The most

distinguishing feature of being Bayesian is of interpreting your probabilites subjectively, in

the sense that they represent your credence in some outcome, or some model. Updating

beliefs using Bayes’ rule is a (conceptually) trivial step, since it just says that your beliefs

are constrained by the rules of probability theory; if they weren’t, you would be vulnerable

to Dutch book arguments (Jaynes, 2003).

In our context, typically A is some model or hypothesis, and B is some observation.

Pr (A) is our prior belief in the correctness of hypothesis A, and Pr (A|B) is our poste-

rior belief in A after taking in some observation, B. Effectively, Bayes’ rule defines the

mechanism with which we move probability mass between competing hypotheses. Note

that once we assign zero probability (or credence) to some hypothesis A, then there is no

observation B that will change our mind about the impossibility of A. This is not such

a problem if it so happens that A is false; the situation in which A is true, and has been

prematurely (and incorrectly) falsified, is sometimes known informally as Bayes Hell. For

this reason, we try to avoid using priors that assign zero probability to events; this is

known more formally as Cromwell’s rule.

Notice that in general the sample spaces ΩA and ΩB are different; B is a random

variable on some set of possible observations, ΩB, while A is a random variable over a

set of hypotheses, which aren’t observed, but constructed. To emphasize this distinction,

we use a separate notation: M represents a set (or, in the uncountable case, space) of

hypotheses, which we will call a model class. We implicitly assume that in all cases M
contains at least two elements. Sequential Bayesian updating in this way is an inductive

process; we refine our models based on observation. As we will see in Section 2.3, the

predictive distribution Pr (B) will play an important role for our reinforcement learning

agents.

We formalize Cromwell’s rule with the concept of a universal prior.

Definition 1 (Universal prior). A prior over a countable class of objects M is a proba-

bility mass function p ∈ ∆M, such that p (ν) is defined for each ν ∈M, with p (ν) ∈ [0, 1]

and
∑

ν∈M p (ν) = 1. A universal prior assigns non-zero mass to every hypothesis such

that p (ν) ∈ (0, 1) for all ν ∈M.

We often make use of the following distributions:

Bernoulli. We use Bern (θ) to represent the Bernoulli process on x ∈ {0, 1}, with

probability mass function given by p (x|θ) = θx (1− θ)x.

Binomial. We use Binom (n, p) to represent the Binomial distribution on k ∈
{0, . . . , n} with mass function given by p (k|n, p) =

(
n
k

)
pk (1− p)k, where

(
n
k

)
= n!

k!(n−k)! is
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the known as the binomial coefficient.

Uniform. We use U (a, b) to represent the measure that assigns uniform density to

the closed interval [a, b], with b > a; its density is given by p (x) = 1
b−aI [a ≤ x ≤ b]. We

overload our notation (and nomenclature) and also use U (A) to represent the uniform

distribution over the finite set A; its mass function is given by p (a) = 1
|A| .

Normal. We use N
(
µ, σ2

)
to represent the univariate Gaussian distribution on R

with density given by

p
(
x|µ, σ2

)
=
(
2πσ2

)− 1
2 exp

(
−(x− µ)2

2σ2

)
.

Beta. We use Beta (α, β) to represent the Beta distribution on [0, 1] with density given

by

p (x|α, β) =
Γ (α+ β)

Γ (α) Γ (β)
xα−1 (1− x)β−1 ,

where Γ is the Gamma function that interpolates the factorials.

The beta distribution is conjugate to the Bernoulli and Binomial distributions; this

means that a Bayesian updating scheme can use a Beta distribution as a prior p (θ) over

the parameter of some Bernoulli process, whose likelihood is given by p (x|θ). Since the

Beta and Bernoulli are conjugate, the posterior p (θ|x) will also take the form of a Beta

distribution. Conjugate pairs of distributions such as this allow us to analytically compute

the posterior resulting from a Bayesian update, and are essential for tractable Bayesian

learning.

Dirichlet. We use Dirichlet (α1, . . . , αK) to represent the Dirichlet distribution on the

1-simplex

SK
.

=
{
x ∈ RK+

∣∣ 1Tx = 1
}
,

with density given by

p (x|α) =
Γ
(∑K

i=1 αi

)
∏K
i=1 Γ (αi)

K∏
i=1

xαi−1
i .

This is the multidimensional generalization of the Beta distribution, and is conjugate

to the Categorical and Multinomial distributions. The categorical distribution over some

discrete set X is simply a vector on the 1-simplex, p ∈ SK , where K = |X |. The multino-

mial simply generalizes the binomial distribution.

As we shall see in Section 2.3, a significant aspect of intelligence is sequence prediction.

For this reason, we introduce measures over sequences. A distribution over finite sequences

ρ ∈ ∆X ∗ can be written as ρ (x1:n) for some finite n. Analogously to the sum and product

rules, we have

ρ (xn|x<n) =
ρ (x1:n)

ρ (x<n)

ρ (x<n) =
∑
y∈X

ρ (x<ny) .

There are two important properties that sequences can have which are relevant to

reinforcement learning: the Markov and ergodic properties:
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Markov property. A generative process ρ is nth-order Markov if it has the property

ρ (xt|x<t) = ρ
(
xt|x(t−n):(t−1)

)
.

Typically, when we invoke the Markov property, we mean that the process is 1st-order

Markov. A Markov chain is simply a first-order Markov process over a finite alphabet X ,

in which the conditional distribution is stationary, and can thus be represent as a |X |×|X |
transition matrix P (x′|x) ≡ ρ (x′t|xt−1). This matrix is said to be stochastic, to emphasise

that it represents a distribution over x′, so that P (x′|x) ∈ [0, 1] and
∑

s′ P (x′|x) = 1. In

this context, we often identify the symbols x ∈ X with states.

Ergodicity. In a Markov chain, a state i is said to be ergodic if there is non-zero

probability of leaving the state, and the probability of eventually returning is unity. If

all states are ergodic, then the Markov chain is ergodic. Informally, this means that the

Markov chain has no traps: at all times, we can freely move around the MDP without

ever making unrecoverable mistakes. Ergodicity is an important assumption in the theory

of Markov Decision Processes, which we will see later.

2.1.3 Information theory

For a distribution p ∈ ∆X over a countable set X , the entropy of p is

Ent (p)
.

= −
∑

x∈X : p(x)>0

p (x) log p (x) . (2.4)

Absent additional constraints, the maximum entropy distribution is U , our generalized

uniform distribution. We also define the conditional entropy

Ent (p (·|y))
.

=
∑

x∈X : p(x)>0

p (x|y) log p (x|y) .

Given two distributions p, q ∈ ∆X , the Kullback-Leibler divergence (KL-divergence,

also known as relative entropy) is defined by

KL (p‖q) .
=

∑
x∈X : p(x)>0,q(x)>0

p (x) log
p (x)

q (x)
.

We use the ‖ symbol to separate the arguments so as to emphasise that the KL-

divergence is not symmetric, and hence not a distance measure. It is non-negative, by

Gibbs’ inequality. If p and q are measures over sequences, then we can define the condi-

tional d-step KL-divergence

KLd (p, q|x<t) =
∑

xt:t+d∈X d
p
(
x1:(t+d)|x<t

)
log

p
(
x1:(t+d)|x<t

)
q
(
x1:(t+d)|x<t

) .
2.2 Reinforcement Learning

In contrast to machine learning, in the reinforcement learning setting, the training data

that the system receives is now dependent on its actions; we thus introduce agency to

the learning problem (Sutton and Barto, 1998). What observations the agent can make,

and therefore what it can learn, now depend not only on the environment (as in machine
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Agent

Environment

atet

Figure 2.1: Cybernetic model of agent-environment interaction.

learning), but also on the agent’s own policy, which determines how it will behave (Barto

and Dietterich, 2004). In this way, reinforcement learning considerably generalizes machine

learning; we replace the loss function of Equation (1.1) with a reward signal. Now, instead

of minimizing risk, the agent must seek to maximize future expected rewards. In this way,

reinforcement learning generalizes machine learning to the active setting, so that the agent

can now influence its environment with the actions that it takes.

We distinguish this from the related set-up known as inverse reinforcement learning

or imitation learning (Abbeel and Ng, 2004), in which the agent is given training data

consisting of a history of actions and percepts from which it must infer a policy. In

contrast, reinforcement learners must take their own actions and learn through trial and

error – they are only supervised to the extent that their extrinsic reward signal gives them

feedback on their policy.

Because we are motivated by the general reinforcement learning problem, we introduce

a more general and pedantic setup than is common in the reinforcement learning literature.

This set-up has been honed by (for example) Lattimore and Hutter (2011) and Leike et al.

(2016).

2.2.1 Agent-environment interaction

In the standard cybernetic model (see Figure 2.1), the agent and environment are separate

entities that play a turn-based two-player game. At time t, the agent produces an action

at, which is passed as an input to the environment, which performs some computation

that (in general) changes its internal state, and then returns a percept et to the agent. We

often refer to the time t as the number of agent-environment cycles that have elapsed.

Together, the agent and environment generate a history æ1:t = a1e1 . . . atet. In general,

it is consequential to the behavior of the agent whether this interaction runs indefinitely

or finishes after some finite lifetime T (Martin et al., 2016); we discuss this to an extent

when we introduce discount functions in section 2.2.2.

Definition 2 (Environment). An environment is a tuple (A,S, E , D, ν), where

• A is the action space,

• S is the state space of the environment, which is in general hidden from the agent.

• E is the percept space, which is itself composed of observations o ∈ O and rewards

r ∈ R with E = O ×R.
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• D : S × A  S is the (in general stochastic) dynamics/transition function on the

environment’s state space. Note that, without loss of generality, we can allow D to

be first-order Markov.

• ρ : S → ∆E is the percept function, by analogy to a hidden Markov model (HMM)

in the context of statistical machine learning2.

Note that for the purposes of General reinforcement learning (GRL), we make no Markov

assumption on the percepts, and we make no ergodicity assumption on the state or percept

spaces.

Since we typically take the agent’s perspective, we don’t have access to the environ-

ment’s state s ∈ S, nor its dynamics D. For this reason, we typically talk about the

environment in terms of the measure

ν : (A× E)∗ ×A → ∆E ,

which we write

ν (et|æ<tat) .

Note that the vertical bar | is an abuse of notation here: ν is not conditioned on

the actions, since it is not derived from a joint distribution over actions and percepts;

the sequence of actions a1:t are inputs to the environment. A more pedantic (but ugly)

notation would be to write ν (et|e<t‖a1:t) or ν (et|e<t; a1:t), which emphasizes that ν is

a conditional distribution with respect to percepts, but not with respect to actions. We

typically refer to the environment itself with the symbol ν, for convenience.

It is worth pausing to make some remarks about this setup here:

1. In the general setting, environments are partially-observable Markov decision pro-

cesses (POMDPs). We can always model an environment as Markovian with respect

to some hidden state, since if it depends on some history of states, we incorporate

sufficient history into the state until the Markov property is restored.

2. For our purposes, we assume that A, E , and S are all finite.

3. No matter what state the agent is in, it always has the full action space available

to it. This simplifies the setup, and means that when implementing a simulated

environment, we have to specify dynamics for every action in every state – ‘illegal’

or not. For an example of this, see Example 1.

4. Stochastic environments are sufficiently general to model everything, including Na-

ture, adversaries, and naturally, deterministic environments.

5. This is an implicitly dualistic model, in the sense that the agent is separate from the

environment; in reality the agent will be embedded within the environment.

6. As with all simulations run on computers, time is of course discretized.

7. We stipulate that our environments have the chronological property, which simply

means that percepts at time t do not depend on future actions, i.e. ν (e1:t‖a1:∞) =

ν (e1:t‖a1:t).

2POMDPs are to MDPs as Hidden Markov Models are to Markov chains.
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? ◦

P (?|?,→)

P (◦|?,→)

P (?|?, 99K)

P (◦|?, 99K)

P (?|◦,→)

P (◦|◦,→)

P (?|◦, 99K)

P (◦|◦, 99K)

Figure 2.2: A generic finite-state Markov Decision Process with two states and two actions:

S = {?, ◦}, A = {→, 99K}. The transition matrix P (s′|s, a) is a 2 × 2 × 2 stochastic matrix, and

the reward matrix R (s, a) is 2× 2.

The agent-environment interaction is thus modelled as a stochastic, imperfect-information,

two-player game. The environment specifies both the percept space E and action space A.

The agent ‘plugs in’ to the environment (which, without loss of generality, can be thought

of as a game simulation) and plays its moves in turns.

We now present some definitions of common classes of environments. For a more

comprehensive taxonomy, see, for example, Legg (2008).

Definition 3 (Markov Decision Process). A finite-state Markov decision process (MDP)

is a tuple (S,A,P,R) where

• S is a finite state space, labelled by indices s1, . . . , s|S|.

• A is a finite action space, labelled by indices a1, . . . , a|A|.

• P is the set of transition probabilities P (s′|s, a), which can be thought of as a

stochastic rank-3 tensor of dimensions |S| × |S| × |A|

• R is the set of rewards R (s, a).

Definition 4 (Bandit). An N -armed bandit is a Markovian environment with one

state S = {s}, N actions A = {a1, . . . , aN} and N corresponding reward distributions

{ρ1, . . . , ρn} with ρi ∈ ∆R. There are no observations, only a reward signal which is sam-

pled from the distribution ρi corresponding to the agent’s last action, ai. Typical choices

for ρ, R are Bernoulli distributions over {0, 1}, or Gaussians over R; see Figure 2.2.1.

Example 1 (Go). Go is a two-player, deterministic, and fully-observable3 board game

with a large, finite state-action space. Played on a 19× 19 board, there are (naively) 3192

3Here we are referring to the game state being fully observable. The opponent’s strategy can of course
be modelled as some hidden variable; for simplicity assume that we model them as minimax, so that there
is no hidden state.
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N (r|µ→, σ→)N (r|µ99K, σ99K)

Figure 2.3: A two-armed Gaussian Bandit. A = {→, 99K}, |S| = 1, and O = ∅. Rewards are

sampled from the distribution of the respective arm.

possibly game states, with an action space of 192 (though many of these moves will be

illegal). It is notoriously hard to evaluate who is winning in any given game state (Silver

et al., 2016); the reward signal is 0 for all game states for which a winner has not been

declared, and ±1 otherwise (depending on which player won).

Definition 5 (Policy). A policy is, in the most general setting, a probability distribution

over actions, conditioned on a history: π (at|æ<t) : (A× E)∗ → ∆A .

Note the symmetry between Definition 5 with ν (et|æ<tat) from Definition 2.

Definition 6 (Agent). Let ΠA,E be the set of all policies on the (A, E)-space. An agent

is fully characterized by a policy π, and a learning algorithm, which is as a mapping from

experience (histories) to policies (A× E)∗ → ΠA,E .

The agent and environment, combined, induce a distribution over histories. We denote

this by νπ ∈ ∆ (A× E)∗. This is equivalent to the state-action visit distribution in the

standard reinforcement learning literature (Sutton et al., 1999).

νπ (æ<t) =

t∏
k=1

π (ak|æ<t) ν (ek|æ<k) (2.5)

The distribution νπ plays an important role in the theory of GRL, since we will use it

to compute the expected sum of future rewards, which is what our reinforcement learners

will seek to maximize.

2.2.2 Discounting

In the context of reinforcement learning, we wish our agent to act according to a policy

that maximizes reward accumulated over its lifetime. In general it is not good enough to

greedily maximize the reward obtained in the next time-step, since in many cases this will

lead to reduced total reward. Thus we define the return resulting from executing policy

π in environment ν from time t as the sum of future rewards ri.

Rπν (æ<t) =
∞∑
k=t

rk,

where each of the rk are sampled from ν (·|π,æ<k); thus the return is a random variable

that depends on the agent policy π, the environment ν, and the history æ<t. In general

this sum will diverge, so in practice we concern ourselves with either the average reward

r̄πν = lim
n→∞

1

n

n∑
k=t

rk,
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or the discounted return

Rπνγ (æ<t) =
∞∑
k=1

γtkrk,

where γtk ≤ 1 is some generalized discount function γt : N→ [0, 1] such that

Γtγ
.

=
∞∑
k=t

γtk <∞.

Here we interpret t as the current age of the agent, and k is the agent’s planning

look-ahead.

Definition 7 (ε-Effective horizon; Lattimore and Hutter (2014a)). Given a discount func-

tion γ, the ε-effective horizon is given by

Ht
γ (ε)

.
= min

{
H :

Γt+Hγ

Γtγ
≤ ε

}
. (2.6)

The ε-effective horizon represents the distance ahead in the future that the agent can

plan while still taking into account a proportion of the available return equal to (1− ε).
The choice of discount function is relevant to how the agent plans; some discount functions

will make the agent far-sighted, and others will make it near-sighted. We discuss planning

more in Section 2.4, and present experiments relating to this in Chapter 4. A common

choice of discount function is the geometric discount function, which is ubiquitous in RL

due to its simplicity:

γtk = βk,

for some β ∈ [0, 1]. That is, it is β raised to the number of cycles that we look ahead

in planning.

2.2.3 Value functions

In general, the environment ν is noisy and stochastic, and the agent’s policy will often

be stochastic. As a result, we can’t maximize the discounted return directly; we must

instead maximize it in expectation. This follows from the Von Neumann-Morgenstern

utility theorem (Morgenstern and von Neumann, 1944).

Definition 8 (Value function). The value V π
νγ : (A× E)∗ → R of a history æ<t in

environment ν under policy π with discount function γ is the expected sum of discounted

future rewards

V π
νγ (æ<t)

.
= Eπν

[ ∞∑
k=t

γtkrk

∣∣∣∣∣æ<t

]
, (2.7)

where we use Eπν above to mean the expectation with respect to νπ, defined in Equation

(2.5). Equation (2.7) above expresses the value function in iterative form. We can also

express it recursively (Leike, 2016a) using the mutually recursive relations
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V π
νγ (æ<t) =

∑
at∈A

π (at|æ<t)V
π
νγ (æ<tat)

V π
νγ (æ<tat) =

1

Γt

∑
et∈E

ν (et|æ<tat)
[
γtrt + Γt+1V

π
νγ (æ1:t)

]
.

For simplicity, from here on we will often omit the γ subscript and make the dependence

on the discount function implicit. We will also suppress the normalization 1
Γt

, as it clutters

the notation and is introduced for technical reasons (so that value is normalized). Finally,

we often also suppress the history æ<t for clarity.

Definition 9 (Optimal value & policy). The optimal value V ∗ν achievable in environment

ν given a history ae<t is

V ∗ν
.

= max
π

V π
ν , (2.8)

and the corresponding optimal policy π∗ is

π∗ν = arg max
π

V π
ν .

Assuming bounded rewards and finite action spaces, these maxima exist for all ν

(Lattimore and Hutter, 2014b), though they are not unique in general. For our purposes,

we allow arg max to break ties at random. At this point it is elucidatory to unroll Equation

(2.8) into the expectimax expression

V ∗ν (æ<t) = lim
m→∞

max
at

∑
et

· · ·max
at+m

∑
et+m

t+m∑
k=t

γtkrk

k∏
j=t

ν (ej |æ<jaj) . (2.9)

Note that we can do this by using the distributive property of max over +. In Section

2.4, we will discuss how to approximate this expectimax calculation for general environ-

ments, up to a finite horizon m.

2.2.4 Optimality

Informally, it makes sense to evaluate an agent’s performance against that of the optimal

policy, were it put in the same situation. We can only sensibly talk about this performance

asymptotically in general, that is, in the limit t→∞, since the agent needs time to learn

the environment, and we can’t evaluate the agent after some finite time t, since this time

would in general be environment-dependent.

Definition 10 (Asymptotic optimality; Lattimore and Hutter, 2011). A policy π is

strongly asymptotically optimal in environment class M if ∀µ ∈M

µπ
(

lim
t→∞

{
V ∗µγ (æ<t)− V π

µγ (æ<t)
}

= 0
)

= 1,

where µπ is the measure induced by the interaction of environment µ with policy π.

The policy π is weakly asymptotically optimal in M if ∀µ ∈M

µπ

(
lim
n→∞

1

n

n∑
t=1

{
V ∗µγ (æ<t)− V π

µγ (æ<t)
}

= 0

)
= 1.
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Finally, we say π is asymptotically optimal in mean over M if ∀µ ∈M

lim
t→∞

Eπµ
[
V ∗µγ (æ<t)− V π

µγ (æ<t)
]

= 0.

Asymptotic optimality is objective and general, but unfortunately doesn’t capture

everything we want in an agent. For example, in environments with traps – that is, an

accepting state with no transitions leaving it and very low reward – every policy will be

asymptotically optimal after falling into the trap, since no policy will outperform any

other, conditioned on being trapped. Moreover, in uncertain environments with traps, an

agent cannot be asymptotically optimal unless it is sufficiently gung-ho in its exploration

that it eventually falls into traps (Leike, 2016a). Therefore, we should take asymptotic

optimality with a grain of salt; it is not a particularly good measure of optimality in general

environments. The quest for good notions of optimality is currently an open problem in

the theory of GRL (Leike and Hutter, 2015; Leike, 2016a).

2.3 General Reinforcement Learning

We now introduce the agents that are central to the theory of general reinforcement

learning (GRL). We begin with AIµ, which is simply the policy of the informed agent that

has a perfect model of the environment µ:

Definition 11 (AIµ). AIµ corresponds to the policy in which the true environment µ is

known to the agent, and so no learning is required. Behaving optimally reduces to the

planning problem of computing the µ-optimal policy

πAIµ = π∗µ
.

= arg max
π

V π
µ .

The astute reader will notice that πAIµ is simply the optimal policy for environment

µ; we introduce it here as a separate agent so as to have a benchmark against which to

compare our other reinforcement learners.

In general the environment will be unknown, and so our agents will have to learn

it. For the purpose of studying the general reinforcement learning problem, we consider

primarily Bayesian agents, as they are the most general and principled way to think about

the problem of induction (Hutter, 2005).

2.3.1 Bayesian agents

Our Bayesian agents maintains a Bayesian mixture or predictive distribution ξ over a

countable model class M, given by

ξ (et|æ<tat) =
∑
ν∈M

wνν (et|æ<tat) (2.10)

=
∑
ν∈M

Pr (ν|æ<tat) Pr (et|ν,æ<tat) .

Note that ξ is equivalent to the normalization term in Theorem 1; ξ (e|·) represents the

probability that the agent’s model assigns to e; in other words, it is the agent’s predictive
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distribution. The weights wν ≡ w (ν) ≡ Pr (ν) represent the agent’s credence in hypothesis

ν ∈ M. ν (e|æ<tat) is the probability that model ν assigns to percept e, given history

æ<tat. One can think of the hypothesis/model ν as a latent variable in the model, which

is marginalized out to get the predictive distribution. The only strong assumption we

make in this setup is that the true environment µ is contained inM. Given a new percept

e = (o, r), the Bayesian updates its weights model using Bayes rule:

w (ν|e) =
w (ν) ν (e)

ξ (e)
.

This gives us the very natural updating scheme

wν ← wν
ν (e)

ξ (e)
.

Note that above we have suppressed the history æ<tat for clarity.

That is, given a new percept e, we compute our posterior by multiplying the prior by

the likelihood ratio. Let us pause and make some remarks:

1. We see that Bayesian induction generalizes the Popperian idea of conjecture

and refutation. An environment/model/hypothesis ν is falsified by observa-

tion/perception/experience/experiment e iff ν (e) = 0. Clearly, the posterior goes

to zero for these environments.

2. Bayesian induction is parameter free up to a choice of model class M and prior

w (ν|ε).

3. We use the words environment, model, and hypothesis interchangeably.

4. We can see by its ‘type signature’ that ξ itself is an environment.

Item 4 above underpins the Bayes-optimal agent AIξ.

Definition 12 (AIξ). AIξ computes the ξ-optimal policy, i.e.

πAIξ
.

= arg max
π

V π
ξ . (2.11)

That is, AIξ uses the policy that is optimal in the mixture environment ξ, which we

update with percepts from the true environment µ using Bayes’ rule.

For the purpose of reasoning about general artificial intelligence, we use the largest model

class we can, which isMcomp, the class of all computable environments4. This is what the

famous agent AIXI does:

Definition 13 (AIXI). AIXI is AIξ with the model class given by Mcomp and the

Solomonoff prior

wν = 2−K(ν),

where K (ν) is the Kolmogorov complexity of ν. For a string x, the Kolmogorov

complexity is given by

K (ν)
.

= min {|p| | U (p) = x} ,
4For technical reasons, the literature typically uses MLSC

CCS , the class of lower semi-computable chrono-
logical conditional semimeasures. This distinction is a technical one and of little consequence to us.



20 Background

where U is a universal Turing machine (Li and Vitányi, 2008). For every computable

environment ν, there is a corresponding Turing machine T , so we can define the K (ν) as

the Kolmogorov complexity of its index in the enumeration ν1, ν2, . . . of all environments.

The Kolmogorov complexity is, of course, incomputable.

This gives rise to the famous equation describing the AIXI policy, unrolled in all its

incomputable glory:

aAIXI
t = arg max

at
lim
m→∞

∑
et

· · ·max
at+m

∑
et+m

t+m∑
k=t

γtkrk
∑

p : U(p,a<t)=e1:j

2−|p|.

One can derive computable approximations of Solomonoff induction, most notably by

using a generalization of the Context-Tree Weighting algorithm, which is a mixture over

Markov models up to some finite order n, weighted by their complexity; this is used in the

well-known MC-AIXI-CTW implementation due to Veness et al. (2011).

AIXI achieves on-policy value convergence (Leike, 2016a):

µπ
(

lim
t→∞

[
V π
ξ − V π

µ

]
= 0
)

= 1,

which means that it asymptotically learns the true value of its policy π in environment

µ. It however, doesn’t achieve asymptotic optimality.

Theorem 2 (AIXI is not asymptotic optimal; Orseau, 2010; Leike, 2016a). For any

class M ⊇ Mcomp no Bayes optimal policy π∗ξ is asymptotically optimal: there is an

environment µ ∈M and a time step t0 ∈ N such that for all time steps t ≥ t0

µπ
∗
ξ

(
V ∗µ (æ<t)− V

π∗ξ
µ (æ<t) =

1

2

)
= 1.

This theorem effectively means that the Bayes agent will eventually decide that its

current policy is good enough, and that any additional exploration is not worth its Bayes-

expected payoff. Moreover, AIξ can be made to perform badly with a so-called dogmatic

prior:

Theorem 3 (Dogmatic prior; Leike and Hutter, 2015). Let π be some computable policy,

ξ some universal mixture, and let ε > 0. There exists a universal mixture ξ′ such that for

any history h consistent with πand V π
ξ (h) > ε, the action π (h) is the unique ξ′-optimal

action.

This theorem says that, even using a universal prior that assigns non-zero mass to

every hypothesis in the model class, we can construct a prior in such a way that the agent

never overcomes the bias in its prior. This is in contrast to Bayesian learners in the passive

setting, which can overcome (given sufficient data) any biases in their (universal) prior.

We demonstrate in Chapter 4 an example of a dogmatic prior that prevents the Bayesian

agent from exploring.
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2.3.2 Knowledge-seeking agents

We now come to our first exhibit in the GRL agent zoo: knowledge-seeking agents (KSA).

There are several motivations for defining and studying KSA:

• They represent a way to construct a purely ‘exploratory’ policy. A principled solution

to exploration by intrinsic motivation is one of the central problems in reinforcement

learning (Thrun, 1992).

• They remove the dependence on arbitrary reward signals or utility functions; up to a

choice of model class and prior, ‘knowledge’ is an objective quantity (Orseau, 2011).

• They collapse the exploration-exploitation trade-off to just exploration.

Before formally defining knowledge-seeking agents, it is necessary to introduce the concept

of a utility agent, which generalizes the concept of a reinforcement learning agent.

Definition 14 (Utility Agent; Orseau, 2011). A utility agent is a reinforcement learner

equipped with a bounded utility function u : (A× E)∗×A → R which replaces the notion

of reward. The corresponding value function5 is given by

V π
νγ (æ<t) = Eπν

[ ∞∑
k=t

γtku (æ1:k)

∣∣∣∣∣æ<tat

]
. (2.12)

One can easily verify that this definition generalizes RL agents by setting uRL (æ1:t) =

r (et) , where r (·) returns the second component of the percept tuple et = (ot, rt). Utility

agents are fully autonomous, in the sense that they are not dependent on being ‘supervised’

by an extrinsic reward signal to learn. They are equipped with a utility function at birth

and from then on seek to maximize the discounted sum of future utility.

Knowledge-seeking agents (KSA) are Bayesian utility agents whose utility function

is constructed in such a way as to motivate them to ‘seek knowledge’ and learn about

their environment (Orseau, 2011, 2014). There are several distinct ways in which one can

define knowledge for a Bayesian agent. We will start by defining an agent that gets utility

from lowering the entropy (i.e., reducing uncertainty) in its beliefs. We can define the

information gain resulting from some percept e as the difference in entropy between the

agent’s prior and posterior:

IG (e)
.

= Ent (w (·))− Ent (w (·|e)) , (2.13)

Now, following Lattimore (2013), we consider the ξ-expected information gain. Infor-

mally, this is the information that the agent expects to obtain were the percepts distributed

according to its mixture model ξ. It is also the agent’s expected utility from seeing percept

5Compare with Equation (2.7).
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e. For clarity, we suppress the history æ<tat and time subscripts.

Eξ [IG (e)] =
∑
e∈E

ξ (e) [Ent (w (·))− Ent (w (·|e))]

=
∑
e∈E

ξ (e)
∑
ν∈M

[w (ν|e) logw (ν|e)− w (ν) logw (ν)]

=
∑
e∈E

ξ (e)
∑
ν∈M

[
w (ν)

ν (e)

ξ (e)
logw (ν|e)− w (ν) logw (ν)

]
=

∑
ν∈M

w (ν)
∑
e∈E

ξ (e)

[
ν (e)

ξ (e)
logw (ν|e)− logw (ν)

]

=
∑
ν∈M

w (ν)

[∑
e∈E

ν (e) logw (ν|e)− logw (ν)

]

=
∑
ν∈M

w (ν)

[∑
e∈E

ν (e) logw (ν|e)−
∑
e∈E

ν (e) logw (ν)

]

=
∑
ν∈M

w (ν)

[∑
e∈E

ν (e) log
w (ν|e)
w (ν)

]

=
∑
ν∈M

w (ν)

[∑
e∈E

ν (e) log
ν (e)

ξ (e)

]
=

∑
ν∈M

w (ν) KL (ν‖ξ) .

Thus, by maximizing the ξ-expected information gain, one maximizes the belief-

weighted Kullback-Leibler divergence between ν and ξ.

Definition 15 (Kullback-Leibler-KSA; Orseau, 2014). The KL-KSA is the Bayesian agent

with

uKL (æ1:t) = Ent (w (·|æ<t))− Ent (w (·|æ1:t)) . (2.14)

Notice that the first term doesn’t depend on et, so at any given time step it is fixed by

the agent’s past history. The term that matters is the second one, which is the negative

entropy of the posterior beliefs, after updating on percept et. Intuitively, the agent gets

reward from reducing the entropy (uncertainty) in its beliefs; it seeks out experiences et
that will make it more certain about the world, and won’t be satisfied until entropy is

minimal – that is, when its beliefs converge to the truth such that wν = I [ν = µ] and

Ent (w) = 0. In the most general environment classes, this convergenge won’t be possible,

as there are many environments that are indistinguishable on-policy; in other words, there

will always be hypotheses that the agent can’t falsify. An example of this is the so-called

blue emeralds hypothesis: ‘Emeralds are green, but after next Tuesday, they will become

blue’.

Theorem 4 (Orseau, 2014). KL-KSA is asymptotically optimal with respect to uKL in

general environments.

So much for Kullback-Leibler KSA. There are other ways to construct a knowledge-

seeker. To elucidate this, notice that the entropy in the Bayesian mixture ξ can be de-

composed into contributions from uncertainty in the agent’s beliefs wν and noise in the
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environment ν. That is, given a mixture ξ and for some percept e such that 0 < ξ (e) < 1,

and suppressing the history æ<tat for clarity,

ξ (e) =
∑
ν∈M

uncertainty︷︸︸︷
wν ν (e)︸︷︷︸

noise

.

That is, if 0 < wν < 1, we say the agent is uncertain about whether hypothesis ν

is true (assuming there is exactly one µ ∈ M that is the truth). On the other hand, if

0 < ν (e) < 1 we say that the environment ν is noisy or stochastic. If we restrict ourselves

to deterministic environments such that ν (e) ∈ {0, 1} ∀ν ∀e, then ξ (·) ∈ (0, 1) implies that

wν ∈ (0, 1) for at least one ν ∈ M. This motivates us to define two agents that seek out

percepts to which the mixture ξ assigns low probability; in deterministic environments,

these will behave like knowledge-seekers.

Definition 16 (Square-KSA; Orseau, 2011). The Square-KSA is the Bayesian agent with

utility function given by

uSquare (et|æ<t) = −ξ (et|æ<t) . (2.15)

Definition 17 (Shannon-KSA; Orseau, 2011). The Shannon-KSA is the Bayesian agent

with utility function given by

uShannon (et|æ<t) = − log (ξ (et|æ<t)) . (2.16)

Theorem 5 (Orseau, 2014). Square-KSA and Shannon-KSA are strongly asymptotically

optimal with respect to uSquare and uShannon respectively, in deterministic environments.

They are named ‘Square’ and ‘Shannon’, since in taking ξ-expectation of the utility

functions we get

Eξ [uSquare (·|æ<t)] = −
∑
et∈E

[ξ (et|æ<t)]
2

Eξ [uShannon (·|æ<t)] = −
∑
et∈E

ξ (et|æ<t) log ξ (et|æ<t)

= Ent (ξ) .

These are entropy-seeking agents, since they seek to maximize the discounted sum of

expected utilities, which in both cases are entropies. Note from Figure 2.4 that uSquare and

uShannon are approximately the same (up to an irrelevant additive constant) over the range

[0.5, 1]. Their behaviors become significantly different for ξ → 0: Shannon-KSA loves rare

events, and the rarer the better; uShannon is unbounded from above on the interval as

ξ → 0. The Shannon-KSA, with its expected utility being measured in bits, is closely

related to Schmidhuber’s ‘curiosity learning’, which gets utility from making compression

progress (Schmidhuber, 1991).

Square- and Shannon-KSA both fail in general for stochastic environments. We can

see this by constructing an environment adversarially to ‘trap’ these agents and stop them

from exploring: just introduce a noise generator that is sufficiently rich (i.e. is sampled

from a uniform distribution over a sufficiently large alphabet of percepts) so that the

probability of any single percept is low enough that it swamps the utility gained from
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Figure 2.4: Square-KSA utility function plotted against that of Shannon-KSA.

exploring the rest of the world and gaining information. Thus, we can get the Square

and Shannon KSAs ‘hooked on noise’ – they would be endlessly fascinated with a white

noise generator such as a detuned television, and would never get sick of watching the

random, low-probability events. We construct an experiment to explore this property of

KSA agents in Chapter 4.

2.3.3 BayesExp

The idea behind the BayesExp agent is simple. Given that KL-KSA is effective at ex-

ploring, and AIξ is effective (by construction) at exploiting the agent’s beliefs as they

stand: why not combine the two in some way? The algorithm for running BayesExp is

simple: run AIξ by computing the ξ-optimal policy as normal, but at all times compute

the value of the information-seeking policy πKSA. If the expected information gain (up to

some horizon) exceeds some threshold ε, run the knowledge-seeking policy for an effective

horizon. This combines the best of AIξ and KSA, by going on bursts of exploration when

the agent’s beliefs suggest that the time is right to do so; thus, BayesExp breaks out of

the sub-optimal exploration strategy of Bayes, but without resorting to ugly heuristics

such as ε-greedy. Crucially, it explores infinitely often, which is necessary for asymptotic

optimality (Leike, 2016b).

Essentially, the BayesExp agent keeps track of two value functions: the Bayes-optimal

value V ∗ξ , and the ξ-expected information gain value V ∗
ξ,IG, which we obtain by substi-

tuting Equation (2.14) into Equation (2.12). It then checks whether V ∗
ξ,IG exceeds some

threshold, εt. If it does, then it will explore for an effective horizon Ht(εt), and otherwise it

will exploit using the Bayes-optimal policy π∗ξ . See Algorithm 2.1 for the formal algorithm.

Theorem 6 (Lattimore, 2013). With a finite prior w and a non-increasing exploration

schedule ε1, ε2, . . . , with limt→∞ εt = 0, BayesExp is asymptotically optimal in general

environments.

2.3.4 MDL Agent

While AIXI uses the principle of Epicurus to mix over all consistent environments, the

minimum description length (MDL) agent greedily picks the simplest unfalsified environ-
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Algorithm 2.1 BayesExp (Lattimore, 2013)

Inputs: Model class M .
= {ν1, . . . , νK}; w : M → (0, 1); exploration schedule

{ε1, ε2, . . . }.
1: t← 1
2: loop
3: d← Ht (εt)
4: if V ∗ξ,IG (æ<t) > εt then
5: for i = 1→ d do
6: act

(
π?,IGξ

)
7: end for
8: else
9: act

(
π?ξ

)
10: end if
11: end loop

ment in its model class and behaves optimally with respect to that environment until it

falsifies it. In other words, the policy is given by

πMDL = arg max
a

V ∗ρ ,

where

ρ = arg min
ν∈M : wν>0

K (ν) .

Here, the Kolmogorov complexity K plays the role of a strongly weighted regularizer.

That is, MDL chooses the policy that is optimal with respect to the simplest unfalsified

environment. This algorithm will fail in stochastic environments, since there will exist

environments which cannot be falsified (in the strict sense, i.e. wν = 0) by any percept

– for example, an environment in which the agent receives a video feed which is (even

slightly) noisy.

Algorithm 2.2 MDL Agent (Lattimore and Hutter, 2011)

Inputs: Model class M; prior w : M→ (0, 1]; a total ordering � over M.

1: loop
2: Select ρ← min�M
3: repeat
4: act

(
π?ρ
)

5: until ρ (e<t) = 0
6: end loop

2.3.5 Thompson Sampling

Thompson sampling is a very common Bayesian sampling technique, named for Thompson

(1933). In the context of general reinforcement learning, it can be used as another attempt

at solving the exploration problems of AIξ. Informally, the idea is to use the ρ-optimal

policy for an effective horizon, before re-sampling from the posterior ρ ∼ w (·|æ<t) and

repeating – at all times, the agent updates it posterior as usual. This commits the agent

to a single hypothesis for a significant amount of time; one can think of it as testing likely



26 Background

hypothesis one at a time. See Algorithm 2.3 for the formal description of the Thompson

sampling policy πT .

Theorem 7 (Leike et al., 2016). Thompson sampling is asymptotically optimal in mean

in general environments.

Algorithm 2.3 Thompson Sampling (Leike et al., 2016)

Inputs: Model class M; prior w : M→ (0, 1]; exploration schedule {ε1, ε2, . . . }.

1: t← 1
2: loop
3: Sample ρ ∼ w (·|æ<t)
4: d← Ht (εt)
5: for i = 1→ d do
6: act

(
π?ρ
)

7: end for
8: end loop

So much for our GRL agents. We now discuss how to compute the policy π∗ρ for

general environments ρ, discount functions γ, and utility functions u. This general-purpose

planning algorithm will be used to select actions for all of the agents above.

2.4 Planning

We have discussed how Bayesian agents maintain a model of their environment, and up-

date their models based on the percepts they receive. Of course, the other major aspect

of artificial intelligence, distinct from learning, is acting. Recall that, if the environment is

known, computing the optimal policy becomes a planning problem. In general (stochas-

tic) environments, this involves computing the optimal value V ∗µ , which is the expectimax

expression from Equation (2.9). In practice, with finite compute power, we must of course

approximate this expectimax calculation up to some finite horizon m. For finite-state

Markov decision processes with known transitions and rewards, and under geometric dis-

counting, we can compute this by a simple dynamic programming algorithm called Value

Iteration (section 2.4.1). For more general environments, we must approximate it by ‘brute

force’, with Monte Carlo sampling (section 2.4.2).

2.4.1 Value iteration

In a finite-state MDP, if the state transitions P (s′|s, a) and reward function R (s, a) are

known, then we can plan ahead by value iteration:

Vn+1 (s) = max
a∈A

Qn (s, a) , (2.17)

with

Qn (s, a) = R (s, a) + γ
∑
s′∈S

P
(
s′|s, a

)
Vn
(
s′
)
. (2.18)

This is as a dynamic programming algorithm, and is known that value iteration con-
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verges to the value of the optimal policy (Sutton and Barto, 1998):

lim
n→∞

Vn (s) = V ∗ (s) ∀s ∈ S.

Planning by value iteration relies heavily on two strong assumptions: the finite-state

MDP assumption, and geometric discounting. We wish to be able to lift these assumptions

for the purpose of our experiments in GRL, so we move our attention now to planning by

Monte Carlo techniques.

2.4.2 MCTS

Monte Carlo tree search (MCTS) is a general technique for approximating an expectimax

calculation in stochastic games and deterministic games with uncertainty. Its use dates

back several decades, but was popularized and formalized in the last decade or so in the

context of planning for computer Go (Browne et al., 2012). Analogously to minimax (Rus-

sell and Norvig, 2010), we construct a game tree, with Max (the agent) playing one turn,

and Environment (some distribution over percepts) playing the other turn. The branch-

ing factor of Max nodes is of course |A|, while the branching factor of Environment

nodes is upper bounded by |E|. In contrast to minimax, which is used for deterministic

games, we must collect sufficient samples from Environment nodes to get a good esti-

mator V̂ of the expected value for this node. Needless to say, we wish to avoid expanding

the tree out by naively visiting every history æt:m.

Analogously to α-β pruning in the context of minimax, UCT is a MCTS algorithm due

to Kocsis and Szepesvári (2006) that avoids expanding the whole tree, by only investigating

‘promising’-looking histories. These choices must be made under uncertainty, since the en-

vironment is stochastic; hence, we have an instance of the classic exploration-exploitation

dilemma. The UCT algorithm adapts and generalizes the famous UCB1 algorithm used

in the context of bandits (Auer et al., 2002), to balance exploration and exploitation in

the search tree.

UCB stands for ‘upper confidence-bound’, and is a formal version of the principle of

optimism under uncertainty. The general idea is to add an ‘exploration-bonus’ term to

the action selection objective which prefers actions that haven’t been tried much. In the

context of bandits, the UCB action selection is given by

aUCB = arg max
a∈A

(
R̂ (a) + C

√
log T

N (a)

)
, (2.19)

where R̂ (a) is the current estimator of the mean reward that results taking action a, T

is the lifetime of the agent, N (a) is the number of times that a has been taken, and C > 0 is

a tunable parameter. This exploration bonus allows us to make a good trade-off between

exploration and exploitation. Consider the exploration bonus term in Equation (2.19)

above: by the central limit theorem, we can use the fact that the variance in our estimate

of the mean will be approximately bounded by 1√
N

. The log T term in the numerator

ensures that, asymptotically, we continue to visit every state-action pair infinitely often;

this is necessary to establish regret bounds (Auer et al., 2009). Thus, Equation (2.19)

captures the concept of ‘exploration under uncertainty’ in a principled way; UCT adapts

this to the Monte Carlo tree search planning setting, in Markov decision processes (MDPs).

While UCT is sufficient for planning in unknown MDPs, we need to generalize to histo-
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ries for planning in general environments. Veness et al. (2011) present this generalization,

ρUCT, in their famous MC-AIXI-CTW implementation paper, based on earlier work in

Monte Carlo planning on partially-observable MDPs (Silver and Veness, 2010). Using this

algorithm, we don’t need to know the state transitions as is required for value iteration

(Equation (2.18)); we instead only need some black-box environment model ρ. The ρUCT

action-selection within each decision node of the tree search is given by

aUCT = arg max
a∈A

(
1

m (β − α)
V̂ (æ<ta) + C

√
log T (æ<t)

T (æ<ta)

)
, (2.20)

where β − α is the reward range, and m is the planning horizon; together they are

used to normalize the mean value estimate V̂ for the history under consideration, æ<ta.

As in Equation (2.19), C is a positive parameter which controls how much we weight the

exploration bonus. The exploration bonus itself is of a similar form, although note that we

use log T (æ<t) in the numerator, i.e. the logarithm of the number of times we’ve visited

the current history node.

Notice that, in contrast to so-called ‘model-free’ methods such as Q-learning, our GRL

agents can’t memorize or cache the value function in general; this is because we can only

compute the value of a history and not of states, because of the weakness of our modelling

assumptions. Clearly we can never visit any history æ1:t more than once, so memorization

is useless. For this reason, in general our agent has to re-compute the value at each time

step t, so as to plan its next action at. Hence, all of our model-based (Bayesian) agents

must plan at each time step by forward simulation with ρUCT Monte Carlo tree search.

As we will see in Section 3.7, this is the major computational bottleneck for our GRL

agents. Moreover, planning with MCTS requires us to have finite (and, ideally, small)

action and percept spaces. In Section 3.5, we discuss our implementation of ρUCT, along

with some subtle emergent issues.

In Algorithm 2.4, we present a (slightly expanded, for clarity) version of the ρUCT

algorithm due to Veness et al. (2011).
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Algorithm 2.4 ρUCT (Veness et al., 2011).

Inputs: History h; Search horizon m; Samples budget κ; Model ρ
1: Initialize (Ψ)
2: nsamples ← 0
3: repeat
4: ρ′ ← ρ.Copy()
5: Sample (Ψ, h,m)
6: ρ← ρ′

7: until nsamples = κ

8: return arg maxa∈A V̂Ψ(a)

9: function Sample(Ψ, h,m)
10: if m = 0 then
11: return 0
12: else if Ψ(h) is a chance node then
13: ρ.Perform(a)
14: e = (o, r)← ρ.GeneratePercept()
15: ρ.Update(a, e)
16: if T (he) = 0 then
17: Create chance node Ψ(he)
18: end if
19: reward ← e.reward + Sample (Ψ, he,m− 1)
20: else if T (h) = 0 then
21: reward ← Rollout(h,m)
22: else
23: a← SelectAction (Ψ, h)
24: end if
25: V̂ (h)← 1

T (h)+1

(
reward + T (h)V̂ (h)

)
26: T (h)← T (h) + 1
27: end function

28: function SelectAction(Ψ, h)
29: U = {a ∈ A : T (ha) = 0}
30: if U 6= ∅ then
31: Pick a ∈ U uniformly at random
32: Create node Ψ(ha)
33: return a
34: else
35: return arg maxa∈A

{
1

m(β−α) V̂ (ha) + C
√

log(T (h))
T (ha)

}
36: end if
37: end function

38: function Rollout(h,m)
39: reward ← 0
40: for i = 1 to m do
41: a ∼ πrollout(h)
42: e = (o, r) ∼ ρ(e|ha)
43: reward ← reward +r
44: h← hae
45: end for
46: return reward
47: end function
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2.5 Remarks

We now conclude with a short summary, and some remarks.

In this chapter, we presented the problem of general reinforcement learning, in which

the goal is to construct an agent that is able to learn an optimal policy in a broad class

of (partially observable and non-ergodic) environments. We have presented the current

state-of-the-art GRL agents and algorithms, namely AIξ, Thompson sampling, MDL,

Square-, Shannon-, and Kullback-Leibler-KSA, and BayesExp, under a unified notation,

and we have discussed the ideas and algorithms that allow these agents to learn and plan.

These agents, and the analysis and formalism around them, represent our best theoretical

understanding of rationality and intelligence in this general setting. In the subsequent two

chapters, we present our software implementation of these agents, and some experiments

we run on them.
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Implementation1

There are no surprising facts, only models that are surprised by facts; if a

model is surprised by the facts, it is no credit to that model.

We now present the design and implementation of the open-source software demo,

AIXIjs.2 Our implementation can be decomposed into roughly five major components,

or modules, which we discuss in this chapter:

• Agents. We implement the agents specified in Chapter 2. Some of them differ

by one line of code; for example, the KSA agents can be built from AIξ by simply

replacing its utility function. We document the agent implementation in Section 3.2.

• Environments. We design and implement environments to showcase the various

agents, including a partially observable Gridworld, and a ‘chain’ MDP environment;

both are documented in Section 3.3.3

• Models. For our Bayesian agents, we design and implement two model classes with

which they can learn the Gridworld environment,Mloc andMDirichlet. These are

presented in Section 3.4.

• Planners. We implement value iteration and ρUCT Monte Carlo tree search, which

were presented in Section 2.4. We make some implementation-specific remarks in

Section 3.5.

• Visualization and user interface. We design and implement a user interface that

allows the user to choose demos, read background and demo-specific information,

tune parameters, and run experiments. We also present a graphic visualization for

showing the agent-environment interaction, and for plotting the agent’s performance;

this is presented in Section 3.6.

First, we briefly discuss the software tools we used to implement the project.

1AIXIjs was implemented in collaboration with Sean Lamont, a second-year undergraduate student at
the ANU. Sean wrote many of the visualizations under my supervision; the rest of the implementation
is my own work. More detailed contribution information (including commit history) can be found at
https://github.com/aslanides/aixijs/graphs/contributors.

2The demo can be run at http://aslanides.github.io/aixijs; all supporting source code can be found at
http://github.com/aslanides/aixijs. We encourage the reader to interact with the demo, though again, we
strongly recommend using Google Chrome, as the software was not tested on other browsers, for reasons
detailed in Section 3.1.

3We also implement multi-armed bandits, generic finite-state MDPs, and iterated prisoner’s dilemma,
but we don’t document them here as they don’t play a prominent role in the demos or experiments.
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https://github.com/aslanides/aixijs/graphs/contributors
http://aslanides.github.io/aixijs
http://github.com/aslanides/aixijs
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3.1 JavaScript web demo

We implement AIXIjs as a static web site. That is, apart from web hosting for the

.html and .js source code and other site assets, there is no back-end server required to

run the software; the demo runs natively, and locally, in the user’s web browser. All of the

agent-environment simulations are implemented in modern JavaScript (ECMAScript 2015

specification), with minimal use of external libraries. This allows us to effectively build

a lightweight4 and portable software suite, which a modern web browser can run without

the need for specialized dependencies such as compilers or scientific libraries.

JavaScript (JS) is a high-level, dynamic, and weakly-typed language typically used to

create dynamic content on websites. Google’s V8 JS engine, implemented in their Chrome

web browser, provides a fast JS runtime; in many benchmarks, it is significantly faster than

Python 3.5 As we discussed in the Introduction, this allows for computationally intensive

and visually impressive software. JavaScript, however, does have several shortcomings.

The ones that are relevant to us are:

• JavaScript is a notoriously6 weakly-typed language, which comes with all the pro-

gramming pitfalls and runtime errors one would expect. For example, functions will

silently accept arguments that are null, and attempt to perform computations on

them. In this way, subtle bugs can cause catastrophic runtime errors that can propa-

gate quite far without being caught. We mitigate this to some extent by writing tests

using the QUnit testing framework, and by frequently using the built-in debugger

in Google Chrome.

• JavaScript implementations differ between browsers. For example, some features of

the ECMAScript 2015 specification (for example, anonymous functions) were not

yet implemented by the latest version of the Safari web browser as of September

2016. Worse still, behaviors can differ subtly and in undocumented ways between

browser implementations. We (unfortunately) are forced to work around this by only

supporting recent versions of Google Chrome,7 and discouraging usage on other web

browsers.

We use standard web frameworks and libraries: jQuery and Bootstrap for presentation;

d3js for graphics and visualizations; marked for MarkDown parsing, and MathJax for

rendering mathematics in the browser. Our implementation totals roughly 6000 lines of

JavaScript.

We make use of a modular design, and use class inheritance frequently, so as to mini-

mize code duplication and to leverage the conceptual connections between objects. In the

sections that follow, we occasionally use simple UML diagrams to document these classes.

Note that in these diagrams we use type annotations, for expository purposes.

4Including all source code, external libraries, fonts, text, and image assets, the software totals less than
2 megabytes in size, uncompressed.

5For inter-language comparisons on common benchmarks, see, for example,
http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=node&lang2=python3.

6The author highly recommends a brilliant four-minute video by Gary Bernhardt about the nonsense
that comes from JavaScript’s (lack of) type system: https://www.destroyallsoftware.com/talks/wat.

7The software was last tested on Google Chrome version 54.0.

https://jquery.com/
http://getbootstrap.com/
https://d3js.org
https://github.com/chjj/marked
https://www.mathjax.org/
http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=node&lang2=python3
https://www.destroyallsoftware.com/talks/wat
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BayesAgent

discount : Discount
horizon : Number
ucb : Number
model : Mixture
planner : ExpectimaxTree

update(a : Action, e : Percept) : null
selectAction(null) : Action
utility(e : Percept) : Number

Figure 3.1: BayesAgent UML. discount is the agent’s discount function, γtk. horizon is the

agent’s MCTS planning horizon, m. ucb is the MCTS UCB exploration parameter C.

3.2 Agents

All agents inherit from the base Agent class. Every agent’s constructor takes an Options

object as input, which allows us to pass in default and user-specified options. See Figure

3.2 for the full agent class inheritance tree. The Agent base class specifies the methods

• Update (a, e). Update the agent’s model of the environment, given that it just

performed action a ∈ A and received percept e ∈ E from the environment.

• SelectAction(). Compute, and sample from, the agent’s (in general, stochastic)

policy π (a|æ<t), returning an action a ∈ A.

• Utility (e). This is the agent’s utility function, as defined in Definition 14. For

reward-based reinforcement learners it simply extracts the reward component from

percept.

Every agent is further equipped with a Discount function, as defined in section 2.2.2.

Every Bayesian agent (i.e. of class BayesAgent or one of its descendants) is further

composed of a Model and a Planner, which are both central to its operation. When

we call Update (a, e) on BayesAgent, it saves its model’s state8, calls the model’s

Update (a, e) method, and then computes and stores the information gain (defined in

Equation (2.13)) between the old and new model states. When we call SelectAction,

the agent passes its model to the Planner, and waits for it to compute a best action. If

the information gain from the previous action was non-zero, the planner’s internal state is

reset; otherwise, we prune the search tree but keep the partial result; see Section 3.5 for

more discussion regarding the planner.

The other agents inherit from BayesAgent, and differ from it in straightforward

and transparent ways specified by their respective definitions (Definition 16, Definition

17, Definition 15, Algorithm 2.1, Algorithm 2.2, and Algorithm 2.3). We won’t reproduce

their source code here; the interested reader can find the code in the src/agents/ directory

in the GitHub repository.

8As we shall see in Section 3.4, models must behave like environments. Definition 2 implies that they
must therefore in general maintain some internal state s that is changed by actions a ∈ A.

http://github.com/aslanides/aixijs
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Agent

BayesAgent

BayesExp

SquareKSA

ShannonKSA

KullbackLeiblerKSA

MDLAgent

ThompsonAgent

TabularAgent

QLearn

SARSA

Figure 3.2: Agent class inheritance tree. Note that the BayesAgent is simply AIξ.

3.2.1 Approximations

We now enumerate and justify our use of several approximations and simplifications in

our agent implementations. The first two approximations are motivated by computational

considerations. In both cases, we argue that our use of these simplifications leaves the

agent’s policy invariant. The third simplification is in fact forced upon us; it is inconvenient

and potentially highly consequential to the performance of Shannon-KSA.

• Information gain. Recall from Chapter 2 that the information gain for a Bayesian

agent given a history æ<t is

IG (e|æ<tat)
.

= Ent (w (·|æ<t))− Ent (w (·|æ1:t)) ,

and recall that this is the utility function of the Kullback-Leibler knowledge-seeking

agent (KL-KSA). Now, when computing the KL-KSA policy at time t – that is, in

calls to SelectAction – we compute the value V π,IG
ξ of various potential histories

æ<tatetat+1et+1 . . . at+met+m, and select the action that maximizes this value. Note

that our action-selection doesn’t depend on the absolute value of different histories,

but only on their relative value. Note also that the quantity Ent (w (·|æ<t)) does not

depend on future actions or percepts, as it is determined by events in the agent’s past.

Hence it is a constant that we can ignore when comparing the relative value of future

actions. From the definition of entropy (Equation (2.4)), we see that computing the

entropy of the posterior w (ν|·) requires O (|M|) operations. For this reason, in our

implementation of the KL-KSA, we achieve a 2× speedup by replacing uKL with

the surrogate utility function

u′KL (æ1:t) = −Ent (w (·|æ1:t)) .

• Effective horizon. Recall from Algorithm 2.3 and Algorithm 2.1 that the Thomp-

son sampling and BayesExp agents both explore for an effective horizon Ht
γ (ε)

(Equation (2.6)); this requirement is, in fact, essential to the proofs of their asymp-

totic optimality. However, computing the effective horizon exactly for general dis-

count functions is not possible in general, although approximate effective horizons

have been derived for some common choices of γ (Lattimore, 2013; Table 2.1). More-

over, in practice, due to the computational demands of planning with MCTS (Al-



§3.2 Agents 35

gorithm 2.4), we are forced to plan only with a relatively short horizon m; for most

discount functions γ and realistic ε,9 the true effective horizon Ht
γ (ε) is significantly

greater than m. For this reason, and for simplicity and ease of computation, we use

the MCTS planning horizon m as a surrogate for Ht
γ . Naturally, this choice affects

the agent’s policy, but no more so than we already have by using MCTS to plan up

to some (finite, time-constrained, and pragmaticaly chosen) horizon m rather than

to infinity, as the agents do in the theoretical formalism.

• Utility bounds. Recall from the ρUCT action selection algorithm (Equation (2.20))

that the value estimator V̂ (æ1:t) is normalized by a factor of m (β − α), where

m is the MCTS planning horizon, and α and β are the minimum and maximum

rewards that the agent can receive in any given percept. In the case of reward-based

reinforcement learners, α and β are essentially metadata provided to the agent, along

with the size of the action space |A|, at the beginning of the agent-environment

interaction. For utility-based agents, however, the rewards are generated internally,

and so the agent must calculate for itself what range of utilities it expects to see, so

as to correctly normalize its value function for the purposes of planning.

Thankfully, for the Square and Kullback-Leibler KSAs, this is relatively easy to

do. Since uSquare (e) = −ξ (e), we can immediately bound its utilities in the range

[−1, 0]. In general this won’t be a tight bound, since there exist environment mixtures

in which every percept is in some smaller range, i.e. ξ (·) ∈ [a, b] with a > −1 and

b < 0,10 but in practice, and in particular for our model classes, it is effectively a

tight bound.

In the case of the Kullback-Leibler KSA, recall that uKL (e) = Ent (w (·)) −
Ent (w (·|e)) . If we assume that we are given the maximum-entropy (i.e. uniform)

prior w (·|ε), then clearly uKL (e) ≤ Ent (w (·|ε)) ∀e ∈ E , since entropy is always

non-negative. Hence we have 0 ≤ uKL ≤ Ent (w (·|ε)), i.e. the KL-KSA’s rewards

are bounded from above by the entropy of its prior (assuming a uniform prior), and

from below by zero.

Finally, we come to the problematic case: from Figure 2.4, we know that

uShannon (e) = − log ξ (e) is unbounded from above as ξ → 0. This means that

unless the agent can a priori place lower bounds on the probability that its model ξ

will assign to an arbitrary percept e ∈ E , it cannot upper bound its utility function

and therefore cannot normalize its value function correctly. This is problematic for

us, especially as our environments and models are constructed in such a way as to

allow arbitrarily small probabilities, as we will see in Section 3.3 and Section 3.4.

Unfortunately, it seems we’re stuck here. We’re forced to make an ugly, arbitrary

choice to upper bound the Shannon agent’s utility function with, so as to normalize

its value function. If we choose the upper bound β too high, then the V̂ term

in Equation (2.20) will be artificially, but consistently small; this is equivalent to

inflating the exploration bonus constant C by roughly a constant multiplicative

factor (which is itself upper bounded by some function of β). If β is chosen too

small, however, we can run into much bigger problems, since now V̂ can be over-

inflated by an unboundedly large multiplicative factor. If Shannon KSA sees a very

9Recall that in the case of BayesExp, ε is compared to the value of the knowledge-seeking policy, V ∗,IGξ .
10For example, a coinflip environment in which the agent is trying to falsify one of two hypotheses:

whether a coin is fair (ν (·) = 0.5) or bent (ν (·) 6= 0.5).
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improbable percept, its value estimates will blow up, which will cause suboptimal

plan selection, since the V̂ will overwhelm the exploration bonus term in Equation

(2.20). We are forced to choose a β, so we use a very large upper bound, β = 103

in an attempt to balance this trade-off, but bias it in favor of overestimating β.

For us to exceed −103 in log2 probability requires us to assign a probability of

ξ (e) ≤ 2−103 = 10−301, which is approaching the limits of numerical precision in

JavaScript. With this setting of β we are unlikely to blow up our value estimate,

although we will be severely inflating the UCB constant. As we will see in Chapter

4, this is quite possibly the cause of some suboptimal behavior in the Shannon KSA.

3.3 Environments

Recall that AIXI and its variants are theoretical models of unbounded rationality, not

practical algorithms. Bayesian learning and planning by forward simulation with Monte

Carlo tree search are both very computationally demanding, so we restrict ourselves to

demonstrating their properties on small-scale POMDPs and MDPs.

Analogously to the case of agents, all environments inherit from the base

Environment class. Every environment’s constructor takes an Options object as input,

which allows us to pass in default and user-specified options. The Environment base

class specifies the methods

• ConditionalDistribution(e). Returns the probability ν (et|ae<tat) that the en-

vironment assigns to percept e given its current state resulting from the history

æ<tat.

• GeneratePercept(). Sample from ν (e) and returns a percept e ∈ E .

• Perform(a). Take in action a ∈ A and mutate the environment’s (in general,

hidden) state according to its dynamics.

• Save() and Load(). These functions save and load the environment’s internal state.

This is a convenience for our Bayesian agents; it allows them to reset the envi-

ronments ν ∈ M that make up their mixture model, after running counterfactual

simulations in a planner.

We now introduce the Gridworld and Chain environments. The interested reader can

find the source code to these, and other, environments in the src/environments/directory

in the GitHub repository.

3.3.1 Gridworld

Our gridworld consists of an N ×N array of tiles. There are four types of tiles: Empty,

Wall, Dispenser, and Trap, with the following properties:

• Empty tiles allow the agent to pass, albiet while incurring a small movement penalty

rEmpty.

• Wall tiles are not traversable. If the agent walks into a wall, it incurs a negative

penalty rWall < rEmpty.

http://github.com/aslanides/aixijs


§3.3 Environments 37

Environment

state : Object
minReward : Number
maxReward : Number
numActions : Number

generatePercept() : Percept
perform(a : Action) : null
conditionalDistribution(e : Percept) : Number
save() : null
load() : null

Figure 3.3: Environment UML. state is the environment’s current state, it is simply of type

Object, since we are agnostic as to how the environment’s state is represented. If JavaScript

supported privated attributes, this would be private to the environment, to enforce the fact that

the state is hidden in general. In contrast, minReward (α), maxReward (β), and numActions (|A|)
are public attributes: it is necessary that the agent know these properties so that the agent-

environment interaction can take place.

• Dispenser tiles behave like Empty tiles as far as movement and observations are

concerned, but they dispense some large reward rCake � rEmpty with probability θ,

and rEmpty otherwise; that is, all Dispensers are (scaled) Bernouilli (θ) processes.11

• Trap tiles, as the name suggests, don’t allow you to leave. Moreover, once stuck in

a trap, the agent will receive rWall reward constantly.

The gridworld we construct is a POMDP; the environment’s hidden state is the agent’s

grid position s = (i, j) and the positions of all walls, traps, and dispensers. Observations

consist of a bitstring telling the agent whether the adjacent squares in the {←,→, ↑, ↓}
directions are Walls or not; the edges of the Gridworld are treated implicitly as walls.

The agent can move in these four cardinal directions, or stand still (this is the so-called

‘no-op’, which we denote by ©). The only way to distinguish a Dispenser from an

Empty tile is to walk onto it and observe the (in general, stochastic) reward signal; for

low values of θ, it may take some time for a Dispenser to reveal itself. The only way to

distinguish a Trap from an Empty tile is to walk onto it and see if you get trapped or

not. Hence, we can characterize the action and percept spaces as

A = {←,→, ↑, ↓,©}
E = B4 × {rWall, rEmpty, rCake} .

Movement and observations are all deterministic; the only stochasticity in this envi-

ronment arises from the reward signal from the dispenser(s).

For the purposes of our demos and experiments, we generate random gridworlds by

independently and randomly assigning each tile to one of the four classes, with a strong

bias towards being Empty, and a slighter weaker bias towards being a Wall. The agent’s

11The AIXIjs agent mascot is Roger the Robot . Roger likes Cake, and will do anything it takes to
get near a Cake Dispenser.
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Figure 3.4: Visualization of a 10 × 10 Gridworld with one Dispenser. The agent starts in the

top left corner. Wall tiles are in dark grey. Empty tiles are in white. The Dispenser tile is

represented by an orange disc on a white background.

starting position is always the top left corner, at tile (0, 0). We ensure that the gridworld is

solvable by ensuring there is at least one dispenser, and by running a breadth-first-search

to check whether there is a viable path from the agent’s starting position to the dispenser

with the highest pay-out frequency, θ.

This gridworld environment is sufficiently rich and interesting to demonstrate most of

what we seek to show: the agents have to reason under uncertainty to navigate the maze

and find the (best) dispenser, while avoiding traps. We report on numerous experiments

using this environment in Chapter 4.

3.3.2 Chain environment

We present a deterministic version of the chain environment of Strens (2000). The chain

environment is a deterministic finite-state Markov decision process. The action space is

A = {→, 99K}, and the state space is |S| = N + 1, for some integer N ≥ 1. The reward

space is {r0, ri, rb} with r0 < ri � rb; example values are (r0, ri, rb) = (0, 5, 100), with

N = 6. From Figure 3.5, we can see that at all times, the agent is tempted to reap

immediate reward of ri by taking the → action, which puts it in the initial state, losing

whatever progress it was making towards getting to sN , from which state it can take 99K,
which isn’t immediately as rewarding as →, but eventually leads to a very large payoff

rb � ri. For N < rb
ri

, the optimal policy is to always take 99K so as to perform the circuit

s1 → s2 → · · · → sN → s1 → . . . and accumulate an average reward of rb
N . Otherwise,

the optimal policy is to always take → and remain in the initial state. We denote these

two policies as π99K and π→.

The (deterministic) state transition matrix is given by

P
(
s′|s,→

)
= I

[
s′ = 0

]
P
(
s′|s, 

)
= I

[
s′ = (s+ 1) mod (N + 1)

]
,

and the rewards are given by

R (s, a) = riI [a =→] + rbI [a =99K] I [s = N + 1] .
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initial s1 s2 s3 sN

ri

ri
ri

ri
ri

r0 r0 r0 . . .

rb

Figure 3.5: Chain environment. There are two actions: A = {→, 99K}, the environment is fully

observable: O = S, and R = {r0, ri, rb} with rb � ri > r0. For N < rb
ri

, the optimal policy is to

continually take action 99K, and periodically receive a large reward rb.

We construct this environment with N < rb
ri

, so as to present a test of an agent’s

far-sightedness. To stay on the optimal policy π99K, the agent must at all times resist the

temptation to take the greedy action → which results in the instant gratification ri, as

this causes it to lose its progress towards the ‘goal’ state sN . This simple environment

models a classic situation from economics and decision theory in which humans have been

known to be time-inconsistent – that is, informally, an agent acts impulsively on desires

that don’t agree with its long-term preferences (Hoch and Loewenstein, 1991). We report

on experiments using this environment in Chapter 4.

3.4 Models

As we have seen in Chapter 2, the GRL agents we are concerned with are model-based and

Bayesian. In this section we describe the generic BayesMixture model, which provides

a wrapper around any model class M, represented as an array of Environments, and

allows us to compute the Bayes mixture of Equation (2.10). We then describe a model

class for Gridworlds that we plug in to this BayesMixture, and a separate Dirichlet

model.

The BayesMixture model provides us with a mechanism with which to use

any array of hypotheses
(
ν1, ν2, . . . , ν|M|

)
and a prior

(
w1, . . . , w|M|

)
∈ [0, 1]|M| as a

Bayesian environment model. Note that all environment models must implement the

environment interface: namely, they must have Perform, GeneratePercept, and

ConditionalDistribution methods. In addition, Bayesian models must have an

Update method, to update them with observations (either simulated or real), and Save

and Load methods to restore their state after planning simulations. We document these

methods in Algorithm 3.1:

• GeneratePercept: To generate percepts from the mixture model ξ, we sample an

environment ρ from the posterior w (·), then generate a percept from ρ; in the context

of probabilistic graphical models, this is known as ancestral sampling (Bishop, 2006).

• Perform(a): We simply perform action a on each member ν of M.

• ConditionalDistribution(e): We return ξ (et|æ<tat) =
∑

ν∈Mwνν (et|æ<tat),

where the conditioning on the history æ<tat is implicitly taken care of by condition-

ing on the environment’s internal state s.
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• Update (a, e): We update our posterior given percept e using Bayes rule: w (ν|e) =

w (ν) ν(e)
ξ(e) , for each ν ∈M.

BayesMixture

modelClass : [ ]Environment
weights : [ ]Number

generatePercept() : Percept
perform(a : Action) : null
update(a : Action, e : Percept) : null
conditionalDistribution(e : Percept) : Number
save() : null
load() : null

Figure 3.6: BayesMixture UML diagram. Internally, the BayesMixture contains a modelClass

M, which is an array of environments, and weights w, which are a normalized array of floating-

point numbers.

Our objective is to construct a Gridworld model that is sufficiently informed, or con-

strained, so as to make it possible for the agent to learn to solve the environments we give

it within a hundred or so cycles of agent-environment interaction, but that is also suffi-

ciently rich and general so that it is interesting to watch the agent learn. For this reason,

we eschew very general and flexible models such as the famous context-tree weighting data

compressor used by Veness et al. (2011), since they will take too long to learn the envi-

ronments for a practical demo. Instead, we construct two models, with varying degrees of

domain knowledge built-in:

1. A mixture model parametrized by dispenser location, which we call Mloc.

2. A factorized Dirichlet model, in which each tile is represented as an independent

Dirichlet distribution. We call this model MDirichlet.

The interested reader can find the source code for these and other models in the

src/models/ directory in the GitHub repository.

3.4.1 Mixture model

Before we present the mixture model Mloc, we consider the problem of constructing a

model classM. That is, we want a simple and principled method with which to construct a

finite but non-trivial set of hypotheses about the nature of the true Gridworld environment

µ. We do this by chosing some discrete parametrization D =
{
d1, . . . , d|M|

}
such that a

model class M is constructed by sweeping through values of d ∈ D:

ξ (e) =
∑
d∈D

wdνd (e) .

One can think ofD as describing a set of parameters about which the agent is uncertain;

all other parameters are held constant, and the agent is fully informed of their value.

We now consider and implement three different choices for the parametrization D, and

enumerate some of the pros and cons for each.

http://github.com/aslanides/aixijs
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1. Dispenser location. We construct M by sweeping through all legal (that is, not

already occupied by a Wall) dispenser locations, given a fixed maze layout, and fixed

dispenser frequencies. In other words, we hold constant the layout of all Empty,

Wall, and Trap tiles, and vary the location of the dispensers. The agent’s beliefs

w (νij) are now interpreted as the agent’s credence that the dispenser is at location

(i, j) in the Gridworld.

The benefit of this choice of D is that it is straightforward and intuitive: the agent

knows the layout of the gridworld and knows its dynamics, but is uncertain about

the location of the dispensers, and must explore the world to figure out where they

are. This also has the benefit of lending itself easily to visualization of the agent’s

beliefs: see Figure 3.7. Moreover, since dispensers are stochastic, it may take several

observations to falsify any given hypothesis ν; the model class allows for ‘soft’ falsi-

fication. Another advantage of this model class is that it incentivizes the agent to

explore, since the agent will initially assign non-zero probability mass to there being

a dispenser at every empty tile.

A significant downside of this model class is that we get a combinatorial explosion if

we want to model environments with more than one dispenser. That is, given a maze

layout with L legal positions, a model class with M dispensers will have |M| =
(
L
M

)
elements. Another downside is that the agent knows the maze layout ahead of time,

which detracts from some of the interest in having a maze on the Gridworld. We

present the procedure for generating this model class in Algorithm 3.2.

2. Agent starting location. We use a similar procedure as described in Algorithm

3.2 to construct the model class, except this time by parametrizing by the agent’s

starting location. In this case, D is given by the set of legal starting positions.

This corresponds nicely to the (noise-free) localization problem given a known en-

vironment which shows up often in the field of robotics (Thrun et al., 1999). Since

observations are deterministic, it is possible to discard many hypotheses at once, and

so the agent is able to narrow down its true location very quickly. The Gridworlds

we simulate aren’t large or repetitive enough to have sufficiently ambiguous percepts

for the agent to be uncertain about its location for more than a few cycles. Thus,

after a short time, the agent is certain of its position, and is longer incentivized to

explore; if the dispenser isn’t within its planning horizon by this stage, it will not be

able to find it, and will perform very badly. We discuss the quirks and limitations

of planning more in Section 3.5.

3. Maze configuration. Perhaps the most general, and hence most interesting, model

parametrization is by maze configuration: the agent is initially uncertain about the

identity of every tile in the Gridworld. Thus, the agent is thrown into a truly

unknown gridworld, and must learn the environment layout from scratch. In a sense

this is the most natural parametrization, since each gridworld layout gives rise to a

truly different environment. Another benefit is that this is a very rich environment

class; unfortunately, this is also the downside, as it is prohibitive to naively enumerate

every possible maze configuration. Given just two tile classes, Empty and Wall,

there are 2N
2

possible N × N mazes. Using this naive enumeration, we would

run out of memory even on a modest 6 × 6 Gridworld, as |M| = 236 ≈ 7 × 1010,

and most laptop computers have only of the order of eight gigabytes, or 6.4 × 1010

bits of memory. We can alleviate this somewhat by simply downsampling, say by
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Figure 3.7: Gridworld visualization with the agent’s posterior w overMloc superimposed. Green

tiles represent probability mass of the posterior wν , with higher values correspond to darker green

color. The true dispenser’s location is represented by the orange disc. As the Bayesian agent walks

around the gridworld, it will move probability mass in its posterior from tiles that it has visited to

ones that it hasn’t.

discarding at random most of the elements of this gargantuan model class. We find

in practice that this runs into similar problems to the second parametrization, and

produces demos that are slow (due to the size of the model class; see Section 3.7

for a discussion of time complexity) and uninteresting, because the agent is able to

falsify so many hypotheses at once.

Algorithm 3.2 Constructing the dispenser-parametrized model class.

Inputs: Environment class E and parameters Φ; Gridworld dimensions N .
Outputs: Model class M and uniform prior w

1: w ← Zeros(N2)
2: M← {}
3: k ← 1
4: for i = 1 to N do
5: for j = 1 to N do
6: ν ← Initialize (E,Φ)
7: if ν.Grid[i][j] = Wall then continue
8: end if
9: ν.Grid[i][j]← Dispenser(θ)

10: M.Push(ν)
11: w[k]← 1
12: k ← k + 1
13: end for
14: end for
15: Normalize(w)

We find empirically that Item 1 above makes for the most interesting demos, and so our

canonical model class used in many of the Gridworld demos is the dispenser-parametrized
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model classMloc. We conclude with some remarks about the properties of learning with

Mloc that will be consequential to our experiments in Chapter 4:

• As mentioned above, usingMloc gives the agent complete knowledge a priori of the

maze layout. The agent’s task becomes to search the maze for the dispenser. This

task incorporates both subjective uncertainty (we typically initialize the agent with

a uniform prior over dispenser location) and noise (for θ ∈ (0, 1), the dispensers are

stochastic processes).

• Using Mloc, the agent knows that there is only one dispenser. This means that,

regardless of θ, once it does find the dispenser – by experiencing the relevant reward

percept – it is able to immediately falsify every other hypothesis regarding the lo-

cation of the dispenser. In other words, its posterior w (·|æ<t) will collapse to the

indicator function I [ν = µ], and the agent will have learned everything there is to

know about the environment.

Now, motivated by the limitations of Mloc that we discussed in Item 1, and inspired by

the notion of a model that is uncertain about the maze layout (Item 3), we set out to

design and implement an alternative Bayesian Gridworld model, MDirichlet.

3.4.2 Factorized Dirichlet model

We now describe an alternative Gridworld model, which has several desirable properties.

In contrast to the naive mixture model, it allows us to efficiently represent uncertainty

over the maze layout, as well as the dispenser locations and payout frequencies θ. This

means that MDirichlet is, in comparison to Mloc, a relatively unconstrained, and thus

harder to learn, model.

The basic idea is to model each tile in the Gridworld independently with a categorical

distribution over the four possible types of tile: Empty, Wall, Dispenser, and Trap.

For an N × N Gridworld, label each of the tiles sij where i, j ∈ {1, . . . , N}. The joint

distribution over all Gridworlds s11, . . . , sNN is then given by the product

p (s11, . . . , sNN ) =

(N,N)∏
(i,j)=(1,1)

p (sij) , (3.1)

where sij ∈ {Empty,Dispenser,Wall,Trap}. Note that here, by Dispenser, we

mean a dispenser with θ = 1. This allows us to model dispensers with θ ∈ (0, 1) as a

stochastic mixture over an Empty tile and a Dispenser with θ = 1. For example, a

dispenser with θ = 0.5 would be represented12 by the distribution p = (0.5, 0.5, 0, 0); a

tile known to be a Wall would be represented by the distribution p = (0, 0, 1, 0). We

initialize our model with the uniform prior; that is, for each tile sij we have p (sij) = 0.25

∀sij ∈ {Empty,Dispenser,Wall,Trap}.
Now, recall from section 2.1.2 that the Dirichlet distribution is conjugate to the cat-

egorical distribution. So, to represent our uncertainty about the relative probabilities of

each of the classes, and to enable us to update our beliefs in a Bayesian way, we make use

of a Dirichlet distribution over the four-dimensional probability simplex. That is, for each

12Recall that the categorical distribution is just a distribution over a set of K categories. We repre-
sent the distribution with a length-K vector p ∈ [0, 1]K . We use the notation Pr (S = s) ≡ p (s) ≡ ps
interchangeably.
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tile s, the probability vector

p
.

=


Pr (s = Empty)

Pr (s = Dispenser)

Pr (s = Wall)

Pr (s = Trap)


is distributed according to

p ∼ Dirichlet (p|α) ,

where α =
[
αEmpty αDispenser αWall αTrap

]T
are the empirical counts of each

class, and 1Tp = 1. Updates to the posterior are trivial: just increment the corresponding

count, i.e. upon seeing one instance of class N , we update with

Dirichlet (p|α1, . . . , αK , N) = Dirichlet (p|α1, . . . , αN + 1, . . . αK) . (3.2)

Now, given that the agent is at some tile st, the conditional distribution over percepts

et is drawn from the product over the neighbouring Dirichlet tiles:

ρ (et|æ<tat) ∼
∏

s′∈ne(st)∪{st}

Dirichlet (p|αs′) . (3.3)

The astute reader will notice that though the joint distribution over tile states factor-

izes, percepts will be locally correlated, since percepts are sampled from neighboring tiles,

and we have a four-connected grid topology.

For the purposes of computational efficiency we make two approximations:

1. We don’t sample ρ from the Dirichlet distributions Equation (3.3), but instead simply

use their mean; recall that the mean of Dirichlet (p|α) is given by

µ =
α∑K
k=1 αk

.

We do this because sampling correctly from the Dirichlet distribution is non-trivial,

and this sampling would need to occur whenever we wish to generate a percept,

either real and simulated; this is a far too large computational cost to bear for the

purposes of our demo. This approximation will effectively reduce the variance in

percepts generated by the model, but in mean, over many simulations, will have

negligible effect.

2. When computing the entropy of the agent’s beliefs for the purposes of calculating

the information gain (Equation (2.13)), computing the joint entropy over all tiles

becomes computationally very expensive, as neighboring tiles are correlated with

respect to percepts, and so the entropy of the joint does not decompose nicely into a

sum of entropies. We compute a surrogate for the entropy by associating with each

tile the mean probability that it assigns to its being a dispenser; that is, for each tile

sij we compute

q (sij) = µijDispenser.

That is, for each tile sij we compute its mean µij , which is a categorical distribution

over {Empty,Dispenser,Wall,Trap}; we then take the Dispenser component.
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We concatenate all the q (sij) together into a vector q̃ of length N2 and normalize.

Thus, the components of q̃ are given by

q̃ij
.

=
q (sij)∑(N,N)

(i,j)=(1,1) q (sij)
.

Now, q̃ij is effectively the model’s mean estimate of the probability that the (i, j)th

tile is a dispenser; this is now directly analogous to the posterior belief w (ν|. . . ) in

the Mloc mixture model, since each environment ν asserts that some unique tile

(i, j) is the dispenser. Now, when computing the entropy of the Dirichlet model, we

simply return Ent (q̃). This approximation is reasonable, since percepts relating to

Walls and Traps are deterministic, and so, once the agent has visited any given

tile, the only uncertainty (entropy) its model has is with respect to whether a tile

is a Dispenser or Empty. Moreover, for a one-dispenser environment, if the agent

visits every tile infinitely often, q̃ij will asymptotically converge to I [(i, j) = (iµ, jµ)]

with Ent (q̃) = 0, where (iµ, jµ) is the true dispenser location in environment µ.

We emphasize that each tile has its own empirical counts αs′ ; these are learned separately,

through observations. Now, in general, as soon as the agent is unsure whether an adjacent

tile is a wall or not, it will become uncertain of its position; its posterior over its position

will diffuse over the Gridworld as time progresses. This corresponds to the difficult problem

known as simultaneous localization and mapping (SLAM), which shows up in robotics

(Leonard and Durrant-Whyte, 1991); it is necessary to use a version of the Expectation

Maximization (EM) algorithm to simultaneously solve the two inference problems. This

is far too difficult a problem to solve in the demo.

Instead, we choose our prior over each of the α so as to allow the agent to learn

immediately whether an adjacent tile is a wall or not. We use the Haldane prior, αk =

0 ∀ k. This has the nice property that it behaves like a uniform prior over the classes

{Empty,Wall,Dispenser,Trap}, but in contrast to the more common Laplace prior

ak = 1 ∀ k, it also has the property that it allows us to do ‘hard’ updates, in which we

move all of the probability mass onto one class in the categorical distribution. That is,

given that observations are deterministic and the maze layout doesn’t change, we know

that if we see a Wall tile adjacent, then our model should represent the fact that this

tile is a Wall with probability one:

αk = I [k = Wall] =⇒ µk = I [k = Wall] .

Note that we avoid ‘hard’ updates with respect to whether a tile is Empty or a Dispenser

by effectively using a Laplace prior over tiles that we know with certainty aren’t walls;

these ‘Laplace’ tiles are easily identifiable as the grey tiles in Figure 3.8; they are tiles that

the agent has been adjacent to, but which it hasn’t stepped onto yet:

α (k|¬Wall) = I [k = Dispenser] + I [k = Empty] . (3.4)

Note that above we use the shorthand αk ≡ α (k) so as to more conveniently represent

conditioning; this is analogous to our writing wν ≡ w (ν) in the case of the mixture model.

Using the Laplace prior, and updating with Bayes’ rule normally, yields the famous Laplace

rule for binary events. Consider some Gridworld tile s that happens to be Empty. If the

agent starts with the Laplace prior given by Equation (3.4) and subsequently visits this
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Figure 3.8: Visualization of a Gridworld, overlayed with the factorized Dirichlet model. White

tiles are yet unexplored by the agent. Pale blue tiles are known to be walls. Different shades of

purple/green represent different probabilities of being Empty or a Dispenser.

tile n times, then the agent’s posterior belief that s is in fact Empty is simply

Pr (s = Empty) =
n+ 1

n+ 2
, (3.5)

which can easily be seen by applying the Dirichlet posterior update (Equation (3.2))

n times. Thus, the agent asymptotically learns the truth as n → ∞, but for any finite n

the model still has some degree of uncertainty.

This Dirichlet model has numerous distinct advantages: it allows the agent to discover

the grid layout as it explores, represent multiple dispensers, and learn online the Bernoulli

parameter θd for any dispenser d, by virtue of maintaining a simple Laplace estimator of the

probabilities Pr (d = Empty) and Pr (d = Dispenser). It also makes for an interesting

visualization, as we can reveal the Gridworld to the user as the agent discovers it; see Figure

3.8. These advantages essentially stem from modelling each tile independently, and come

at the cost of no longer being able to represent our model explicitly as a mixture in the

form of Equation (2.10). This precludes the use of MDirichlet in some algorithms, for

example Thompson sampling, which requires mixing coefficients wν to sample from. It

also comes at a considerable computational cost: as we will see in Section 3.7, this model

is more costly to compute than the (much simpler) Bayes mixture ξ. In Chapter 4, we

perform numerous experiments using this model class, and contrast it (with respect to

agent performance) with the dispenser model class Mloc.

3.5 Planners

We implement both the value iteration and ρUCT MCTS algorithms that were introduced

in Section 2.4. The interested reader can read the source code for our implementation

of these algorithms in the src/planners/ directory in the GitHub repository. In this

section, we discuss some subtle differences between our implementation and the referencee

implementation by Veness et al. (2011), and we make some remarks about planning by

http://github.com/aslanides/aixijs
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simulation generally, and planning in partially observable, history based environments in

particular.

Recall that the objective of ‘planning’ here is to compute, at each time step, the

estimator V̂ ∗ρ , which is a sampling approximation of the expectimax calculation in Equation

(2.9). The agent’s policy is then to take the action that maximizes this value. This is

essentially planning by forward simulation. That is, we use our black-box environment

model ρ to predict how the world will respond to future hypothetical actions. Informally,

we run Monte Carlo simulations of numerous potential histories13, and collect statistics

on which ones lead to the best outcomes. With each sample, we simulate a playout up to

some fixed horizon m.

Due to the stochasticity in general environments (and especially in the mixture model

ξ), typically many samples are needed to converge to a good estimate of V ∗ρ . Note that,

not only do we update the state of our model with each simulated time step, but we

also update the agent’s beliefs. This is an important point that we feel is perhaps not

emphasized enough: a rational agent, while planning under uncertainty, should simulate

changes to its beliefs and the effects such changes will have on its subsequent actions.

After each sample of a forward trajectory, we reset the agent’s model state and beliefs to

what they were before simulating the play-out. MCTS is an anytime algorithm, in the

sense that we can stop collecting samples early, and still have a valid (though perhaps

inaccurate) estimate V̂ ∗ρ .

Notice that we compute V̂ ∗ρ at each time step. Doing this naively, from scratch (i.e.

resetting the search tree) seems wasteful. This prompts us to discuss the issue of caching

partial results. Consider a generic scenario, in which our agent has experienced some

history æ<t, and now computes V̂ ∗ρ (æ<t) using MCTS, so as to plan which action at to

take next. Say its tree search finds, after κ samples, some a∗t = arg maxat V̂
∗
ρ (æ<tat) which

is its best guess as to the most appropriate next action. Since a∗t is the planner’s preferred

action, we surmise that ρUCT has spent a good number of samples simulating scenarios

in the sub-tree that follows from a∗t . For any given percept et that is returned from the

true environment following a∗t , the planner has (with high probability) collected numerous

samples in the subtree corresponding to the history æ<ta
∗
t et, and so has done some of the

work towards calculating V̂ ∗ρ (æ<ta
∗
t et). Thus, we keep the subtree V̂ ∗ρ (æ<tatet) for future

computations.

We now make a few more miscellaneous remarks about Monte Carlo tree search, and

ρUCT in particular:

• Recall that ρUCT makes no assumptions about the environment; it treats ρ as

a history-generating black box. Because ρUCT makes such weak assumptions, this

makes it very inefficient; it will spend a lot of time considering plans that continually

revisit states in the POMDP, since the planner has no notion of state. In other words,

many of the trajectories that it samples are cyclic and look like random walks through

the state space. This is unfortunately unavoidable when planning by simulation on

general POMDPs.

• In the reference implementation, a clock timeout is used to limit the number of Monte

Carlo samples to use. We use a fixed number of samples κ, to ensure consistency

across our experiments.

13Also known as trajectories or play-outs.
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• Being a Monte Carlo algorithm, its output is stochastic, which means that the re-

sulting policy is stochastic. With a limited number of samples κ, the agent’s policy

may vary greatly, and be inconsistent. Clearly, in the limit κ→ 0 the agent’s policy

becomes a random walk, and as κ → ∞ the agent’s policy converges to π∗ρ (Veness

et al., 2011).

• The choice of the UCT parameter C is consequential; recall from Equation (2.20) that

it controls how much to weight the exploration bonus in the action-selection routine

of the tree search. Low values of C correspond to low exploration in-simulation,

and will result in deep trees and long-sighted plans. Conversely, high values of C

will result in short, bushy trees, and greedier (but more statistically informed) plans

(Veness et al., 2011). We experiment with the performance’s sensitivity to C in

Chapter 4.

• It goes without saying that planning by forward simulation is very computationally

intensive, and makes up the bulk of the computation involved in running AIξ and

its variants.

3.6 Visualization and user interface

We now describe the design and implementation of the front-end of the web demo.

The user is initially presented with the About page, which provides an overview and

introduction to the background of general reinforcement learning, including the definitions

of each of the agents; we essentially present a less formal and abridged version of Chapter

2. Using the buttons at the top of the page, the user can navigate to the Demos page,

which presents them with a selection of demos to choose from; see Figure 3.10. When

the user clicks on one of the demos, the web app will open an interface similar to the

one shown in Figure 3.9. This interface allows the user to choose agent and environment

parameters in the Setup section of the UI, or simply use the defaults provided.

Once parameters have been selected, the agent-environment simulation is started by

clicking Run. At this point, the agent-environment interaction loop (Algorithm 3.3) will

begin, and depending on the choice of parameters, and CPU speed, will take a few seconds

to a minute to complete. Three plots will appear on the right hand side: Average reward

(Equation (4.1)), Information gain (Equation (2.13)), and fraction of the environment ex-

plored (for Gridworlds). These plots are updated in real time as the simulation progresses,

so that the user has feedback on the rate of progress. The user can stop the simulation at

any time by clicking Stop. Once the simulation is finished (or stopped prematurely), the

user can watch a visualization of the agent-environment interaction using the Playback

controls.

Beneath each demo is a brief explanation of each of the elements of the visualization,

and of the properties of the agent(s) being demonstrated.

3.7 Performance

We conclude the chapter by making some remarks about the time and space complexity

of these algorithms.
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Figure 3.9: Demo user interface. In the top left, there is a visualization of the agent and environ-

ment, including a visualization of the agent’s beliefs about the environment. Below the visualization

are playback controls, so that the user can re-watch interesting events in the simulation. On the

right are several plots: average reward per cycle, cumulative information gain, and exploration

progress. In the bottom left are agent and environment parameters that can be tweaked by the

user.

Symbol Description Typical values (range)

T Number of simulation cycles [50, 500]

|M| Size of a Bayesian agent’s model class [5, 100]

|S| Size of state space [3, 100]

|A| Size of action space [2, 5]

N Size of gridworld [5, 10]

m Planning horizon [2, 12]

κ Number of Monte Carlo samples [400, 2000]

γ Discount factor (geometric) [0.8, 1]

Table 3.1: Glossary of agent and environment parameters, and their typical values.



50 Implementation

Figure 3.10: Demo picker interface. Each thumbnail corresponds to a separate demo, and is

accompanied by a title and short description.
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Time complexity

From Algorithm 3.3, we see that the main simulation loop consists of four function calls.

The environment methods µ.Perform and µ.GeneratePercept both have constant

time complexity, O (1). Unsurprisingly, most of the computation is done by the agent.

The Bayesian agent AIξ has to, for each t, update its model, and compute its policy

by approximating the value function through Monte-Carlo tree search. From Algorithm

3.1, updating the Bayes mixture requires |M| calls to ν.ConditionalDistribution and

ν.Perform, which are both O (1) operations, and so the worst-case time-complexity of

ρ.Update is O (|M|).
From Algorithm 2.4, we see that the worst-case time complexity for a call to ρUCT

is O (mκ |M| |A|), where recall that m is the agent’s planning horizon, κ is the number

of Monte Carlo samples. This is because each Monte Carlo simulation requires playing

through to the horizon m, and for each simulated time-step k ∈ {1, . . . ,m}, performing

action selection (O (|A|), due to the arg max) and model updates (O (|M|), from above).

Hence, the runtime for our Bayesian agents is dominated by planning; for typical values

κ ≈ 103 and m ≈ 10 we see that well over 99% of the runtime is spent in agent action

selection, performing forward simulations.

In contrast, for Thompson sampling (Algorithm 2.3) and the MDL agent (Algorithm

2.2), the time complexity of ρUCT is merely O (mκ |A|), since these agents compute a

ρ-optimal policy (for some ρ ∈ M), rather than a ξ-optimal policy. Also, recall that for

reward-based agents, computing the utility function is O (1), since the reward signal is

provided by the environment. Recall that the knowledge-seeking agent is simply AIξ, but

with utility function given in Definition 15. Since this involves computing the entropy of

the posterior, which is a distribution overM, we incur an additional (worst-case) runtime

cost of |M| for each simulated timestep, bringing the time complexity of ρUCT for the

KL-KSA agent to O
(
mκ |M|2 |A|

)
. This is a nasty runtime: quadratic in the size of the

hypothesis space!

In the Gridworld scenarios, and using the naive mixture model, we have |A| = 5 and

|M| = N2, where N is the dimensions of the grid – see section 3.4.1. The total worst-case

runtime of the demo is therefore O
(
mκTN2

)
; from Figure 3.9 we can see that the user

has control of these parameters: T (Agent.Cycles), N (Env.N), m (Agent.Horizon),

and κ (Agent.Samples). In practice, on a 3 GHz i7 desktop machine running the latest

version of Google Chrome, values of m = 6, κ = 600, T = 200, and N = 10 yield runtimes

of around 10 seconds, or 20 frames per second (fps). This runtime is while maintaining real-

time plot updates on the frontend, which adds a considerable overhead to each iteration;

if we run the simulations with the visualizations disabled, we get approximately a 2×
speed-up.

Using the Dirichlet model class (section 3.4.2), we no longer have an explicit mixture,

but instead use the factorized model. This means that the time complexity of model queries

and updates doesn’t scale with the gridworld size, but instead scales with the size of the

observation space. Although on paper this is a better scaling because the observation space

is constrained by the four-connected topology of the gridworld, in practice, for the sizes of

gridworlds that we simulate, the Dirichlet model runs significantly slower, because of the

large constant overhead of sampling for each percept. Thus we see that the complexity

of the environment affects the agent two-fold, in that it raises the difficulty of learning a

model, and raises the difficulty of planning, given an accurate (and therefore usually at

least as complex as the environment) model.
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Space complexity

At any given time t, the Bayesian agent’s mixture model takes up O (|M|) space, and its

Monte Carlo search tree takes up in the worst case O (mκ) space. The demo infrastructure

itself is a significant memory consumer: at each time step t ∈ {1, . . . , T}, we log the state

of the agent’s model ξ, the state of the environment µ, along with miscellaneous other

information (actions, percepts, etc.). Therefore the total memory consumption of the demo

is O (|M|T +mκ). For typical values, neither of these terms dominates the other: the

products |M|T and mκ are usually of the order of 104. On modern machines, and for the

parameter settings and constraints we typically use (see Table 3.1), memory consumption

is not an issue. In practice, we find that physical memory usage rarely exceeds 100-200

megabytes.
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Algorithm 3.1 BayesMixture model.

Inputs: Model class M, a list of Environment objects; prior w, a normalized vector of
probabilities.

1: function GeneratePercept
2: Sample ρ from the posterior w(·|æ<t)
3: return ρ.GeneratePercept()
4: end function

5: function Perform(a)
6: for ν in M do
7: ν.Perform(a)
8: end for
9: end function

10: function ConditionalDistribution(e)
11: return

∑
ν∈Mwνν.ConditionalDistribution(e)

12: end function

13: function update(a, e)
14: ξ ←

∑
ν∈Mwνν.ConditionalDistribution(e)

15: for ν in M do
16: wν ← 1

ξν.ConditionalDistribution(e)
17: end for
18: end function

19: function save
20: for ν in M do
21: ν.Save()
22: end for
23: end function

24: function load
25: for ν in M do
26: ν.Load()
27: end for
28: end function

Algorithm 3.3 Agent-environment simulation.

Inputs: Agent π; Environment µ; Timeout T
1: t← 0
2: for t = 1 to T do
3: e← µ.GeneratePercept()
4: π.Update(e)
5: a← π.selectAction()
6: µ.Perform(a)
7: end for
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Chapter 4

Experiments

The strength of a theory is not what it allows, but what it prohibits; if you

can invent an equally persuasive explanation for any outcome, you have zero

knowledge.

In this chapter we report on experiments that we performed using the AIXIjs software.

In particular, we make several illuminating comparisons between various agents; as far as

we are aware, these results represent the first empirical comparison of these agents.

Except where otherwise stated, all of the following experiments were run on 10 ×
10 gridworlds with a single dispenser, with θ = 0.75 (see Section 3.3 for the definition

of our Gridworld). The experiments were averaged over 50 simulations for each agent

configuration. We run each simulation against the same gridworld (see Figure 4.1) for

consistency. We typically run each simulation for 200 cycles, as this is usually sufficient

to distinguish the behavior of different agents. We also typically (though not always) use

κ = 600 MCTS samples and a planning horizon of m = 6. In all cases, discounting is

geometric with γ = 0.99.

There are two metrics with respect to which we evaluate the agents – one for reinforce-

ment learners, and one for knowledge-seeking agents, respectively:

• Average reward, which at any cycle t > 0 is given by

r̄t =
1

t

t∑
i=1

ri, (4.1)

where the ri are the rewards accumulated by the agent during the simulation. In

the case of our Gridworlds, all dispensers have the same ‘pay-out’ rc, and differ only

in the Bernoulli parameter θ which governs how frequently they dispense reward.

In our dispenser gridworlds, the optimal policy is usually1 to walk from the starting

location to the dispenser with the highest frequency, and then stay there. If this

dispenser is D tiles away from the starting tile and has frequency θ, then the optimal

1There are of course pathological cases that break this rule-of-thumb. For any simulation lifetime T
and gridworld dimension N , there exists an ε ∈ (0, 1) such that we can put a dispenser with θ = 1 at the
end of a long and circuitous maze, and put another dispenser right next to the agent’s starting position
with θ = 1 − ε, such that walking to the best dispenser has a high enough opportunity cost to make it
not worthwhile given a finite lifetime T . In practice, most of our demos only use one dispenser, and the
frequencies of the dispensers differ sufficiently so that it is always better to take the time to seek out the
better dispenser.
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policy will, in µ-expectation, achieve an average reward of

r̄?t
.

= E∗µ [r̄t] =
D

t
rw + θ rc,

where rw is the penalty for walking between tiles. In our set-up, rw = −1 and

rc = 100.

• Fraction of the environment explored. We simply count the number of tiles the agent

visits nv (t), and divide by the number of reachable tiles nr:

ft
.

= 100× nv (t)

nr
.

The optimal ‘exploratory’ policy will achieve a perfect exploration score of f = 100%

in O (nr) time steps.

In the plots that follow, the solid lines represent the mean value, and the shaded region

corresponds to one standard deviation from the mean.

Figure 4.1: 10×10 Gridworld environment used for the experiments. There is a single Dispenser,

with dispense probability θ = 0.75. See the caption to 3.7 for a description of each of the visual

elements in the graphic. Unless stated otherwise in this chapter, µ refers to this Gridworld.

4.1 Knowledge-seeking agents

We begin by comparing the three knowledge-seeking agents (KSA): Kullback-Leibler (Def-

inition 15), Square (Definition 16), and Shannon (Definition 17). We compare their explo-

ration performance, and discuss how this performance varies with model class. We also

present an environment that is adversarial to the Square and Shannon KSA.

4.1.1 Hooked on noise

As was discussed in section 2.3.2, the entropy-seeking agents Shannon-KSA and Square-

KSA will generally not perform well in stochastic environments. We can illustrate this

starkly by adversarially constructing a gridworld with a noise source adjacent to the agent’s

starting position. The noise source is a tile that emits uniformly random percepts over a
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sufficiently large alphabet such that the probability of any given percept ξ (e) is lower (and

hence more attractive) than anything else the agent expects to experience by exploring.

In this way, we can ‘trap’ the Square and Shannon agents, causing them to stop

exploring and watch the noise source incessantly; see Figure 4.2. In contrast, the Kullback-

Leibler KSA is uninterested in the noise source, since watching the noise source will not

induce a change in the entropy of its posterior w (·). This experiment corresponds to the

‘Hooked on noise’ demo.

Figure 4.2: Hooked on noise: The entropy seeking agents (Shannon in red, and Square in blue,

obscured behind Shannon) get hooked on noise and do not explore. In contrast, the Kullback-

Leibler agent explores normally and achieves a respectable exploration score.

4.1.2 Stochastic gridworld

Now, we compare the exploration performance ft of Kullback-Leibler, Shannon, and

Square on a stochastic gridworld, using both the dispenser-parametrized mixture Mloc
defined in section 3.4.1 and the factorized Dirichlet model MDirichlet defined in sec-

tion 3.4.2. We plot the results, averaged over 50 runs, in Figure 4.3 and Figure 4.4.

All three KSAs perform better – that is, they explore considerably more of the envi-

ronment – using MDirichlet than with Mloc. In particular, they have both higher mean

and significantly lower variance in ft. In particular, we are interested in the mean µt and

variance σt at the end of the simulation, t = 200. We report2 and interpret the results for

the three agents:

• KL-KSA achieves f200 = 98.8±0.93 usingMDirichlet, and f200 = 77.2±20.6 using

Mloc.

Using Mloc, KL-KSA starts random walking after it finds the dispenser, since (as

discussed in section 3.4.1) the posterior w (ν|æ<t) collapses to the identity I [ν = µ],

2Note that we report the results in the format f = µ ± σ, unlike the more common f = µ ± 2σ (i.e.,
95% confidence) interval.
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with entropy zero. No action will reduce the entropy of w (·) further, and so every

subsequent action is of zero value. In other words, once KL-KSA learns everything

there is to know (i.e. the location of the dispenser), every action is equally un-

rewarding, and, since we break ties in Equation (2.11) at random, the agent executes

a random walk. Thus, if KL-KSA finds the dispenser before having explored the

whole environment, then it will take a long time to random walk into areas of the

environment that it hasn’t already seen. This explains the observation that, using

Mloc , KL-KSA tends not to explore the whole environment, and hence achieves a

relatively low ft-score in mean.

Recall that, due to the Monte Carlo tree search and random tie-breaking, the agent’s

policy is stochastic, and so the order in which it explores the environment will differ

from experimental run to run. Moreover, the dispensers are also stochastic (recall

that θ = 0.75). For the reasons discussed above, the time at which the agent discovers

the dispenser is highly consequential to how much exploration it does; there may

be runs in which KL-KSA explores the whole Gridworld before finally finding the

dispenser, and runs in which it happens to get lucky and stumble onto the dispenser

straight away, and random-walks thereafter. Given the three sources of stochasticity,

both in the agent’s policy and in the percepts, this introduces a lot of variability

into the agent’s performance, and explains the high variance we see in ft in Figure

4.3.

In contrast, recall from section 3.4.2 that MDirichlet doesn’t have the ‘posterior

collapse’ property ofMloc, since the agent’s beliefs about each tile are independent.

This means that even if KL-KSA-Dirichlet happens to find the dispenser early on, it

will still be motivated to explore, since its model will still have a lot of uncertainty

about tiles that it hasn’t yet visited; see Figure 4.5 for a visualization. This is borne

out by the remarkable performance we see in Figure 4.4; after only 100 cycles, KL-

KSA-Dirichlet explores over 90% of the environment on average, and explores nearly

99% on average after 200 cycles.

• Square KSA achieves f200 = 86.9 ± 7.8 using MDirichlet, and f200 = 66.2 ± 27.4

using Mloc; Shannon KSA achieves f200 = 72.7 ± 10.0 using MDirichlet, and

f200 = 65.9± 29.6 using Mloc.

Using Mloc, the performance of the Shannon KSA is essentially indistinguishable

from that of the Square KSA; both agents explore roughly 66% of the environment

over 200 interaction cycles. This is to be expected; once the agents discover the

dispenser, their posterior collapses to the dispenser tile, making the dispenser the

only source of entropy in the Bayes mixture ξ, since the rest of the environment is

now both deterministic and known. Given that the Square and Shannon agents are

both entropy-seeking (recall Equation (2.15) and Equation (2.16)), they will remain

on the dispenser tile indefinitely (and cease exploring), as the dispenser is the only

source of noise in an otherwise bland environment.

The fact that both Square/Shannon KSA will remain on the dispenser tile instead

of random walking as KL-KSA does, also helps to explain the difference in means

(µ200 ≈ 66 for Square/Shannon, while µ200 ≈ 77 for KL). In other words, while

all the KSA stop exploring purposefully once the dispenser is found, KL-KSA ekes

out slightly better exploration performance due (at least in part) to its subsequent

random walk.
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Both the Square and Shannon KSA explore more, and with lower variance, using

MDirichlet than withMloc. This difference is for similar reasons to those described

for the KL-KSA above, and we do not dwell on them. What is interesting is that

the Dirichlet model differentiates the performance of the Square and Shannon KSA,

which until now have performed almost identically: µ200 ≈ 87 for Square KSA, while

µ200 ≈ 73 for Shannon KSA. This result is counter-intuitive, and raises a red flag

that we mentioned in section 3.2.1, namely, that Shannon KSA will have difficulty

planning correctly in Monte Carlo tree search due to its unbounded utility function.

To see why we may be more prone to this with the Dirichlet model than with the

mixture model, recall from Equation (3.5) that, for some tile s that happens to be

empty, if the agent visits s a total of v times, then its posterior belief that s is empty

will be

Pr (s = Empty) =
v + 1

v + 2
,

From Equation (3.1) and Equation (3.3), and using the mean-sampling approxima-

tion, we see that

ρ (eD|s) ≤
1

v + 2
.

If β is an underestimate, then as the agent spends more time v on any given Empty

tile, the probability ρ of sampling a percept eD characteristic of dispensers goes like

v−1, but Shannon KSA’s utility blows up quickly , at a rate of − log v−1, yielding

positive net expected utility. Hence Shannon KSA will be prone to chasing vanishing

probabilities, and will perform suboptimally. Conversely, if β is an overestimate,

then for sufficiently high probability events, the agent’s normalized value estimator
1

m(β−α) V̂ will be vanishingly small, and the agent will compute a suboptimal policy

by having an effectively enormous UCT parameter C. Because Square KSA’s utility

function is bounded, it doesn’t have this problem, and so it outperforms the Shannon

KSA.

Finally, we remark that the KL-KSA handily outperforms Square and Shannon on both

model classes; the difference under the MDirichlet model in particular is stark. By now,

this shouldn’t surprise us: the Kullback-Leibler KSA is far better adapted for stochastic

environments than the entropy seeking agents Shannon-KSA and Square-KSA. Our ex-

periments seem to confirm that seeking to maximize expected information gain is both a

principled, and empirically successful exploration strategy.

From Figure 4.3 we see that, using the mixture model class, the Square and Shannon

exploration performance flattens out after around 150 cycles. This is because they find the

dispenser and get hooked on noise. But, in this Gridworld environment, it happens that

the only source of noise is also the only source of reward. This prompts us to ask: could

Shannon and/or Square KSA ‘unintentionally’ outperform AIξ in terms of accumulated

reward, by virtue of being better at exploration, and by the quirk of the environment

meaning that the optimal entropy-seeking policy (given a collapsed posterior) is actually

also the optimal reward-seeking policy?

We run this experiment, and plot the results in Figure 4.6; we find that indeed, both

entropy-seeking agents outperform AIξ in terms of average reward. We emphasize that

apart from their utility functions, these agents are configured the same; they have the same

prior w (uniform), discount function (geometric, γ = 0.99), planning horizon (m = 6),

and Monte Carlo samples budget (κ = 600). This appears to be empirical evidence of the
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Figure 4.3: Exploration progress of the Kullback-Leibler, Shannon, and Square KSA using the

mixture model Mloc.

Bayes-optimal agent AIξ not exploring optimally. This result is slightly perplexing. We

have no strong theoretical grounds on which to expect AIξ to underperform so drastically

in this scenario, given a uniform prior; we expect AIξ’s performance (w.r.t. reward) to

be an upper bound on the performance of any other Bayesian agent given the same model

class and prior. We have two (weakly held) hypotheses for what could be going on here:

1. Somehow, finding and exploiting sources of entropy is easier and more sample-

efficient for the Monte Carlo planner to do than it is for it to find and exploit

sources of (stochastic) rewards. We find this implausible, as we re-ran the experi-

ment, this time giving far more resources (κ = 2 × 103) to AIXI’s planner than to

KSA’s, with a similar result.

2. There is a bug in our MCTS implementation that is somehow being expressed only

for reward-based agents and not for utility-based agents. This also seems rather

implausible, as our code is fully modular, and the difference between one agent and

the other is one line of code, which defines their respective utility functions.

It seems that Figure 4.6 will remain an enigma, for now; we have no better hypotheses

that could explain this behavior. Reluctantly, we leave this as an open problem for further

experiments.

4.2 AIµ and AIξ

So much for the knowledge-seeking agents. We now experiment with properties of the

Bayes agent AIξ.

We begin by comparing the performance of the informed agent AIµ with the Bayes-

optimal agent AIξ, using the dispenser-parametrized model class; see Figure 4.7.
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Figure 4.4: Exploration progress of the Kullback-Leibler, Shannon, and Square KSA using the

factorized modelMDirichlet. Note the remarkable difference in performance between the Kullback-

Leibler and entropy-seeking agents.

As expected, AIµ outperforms AIξ by a large margin; naturally, having perfect prior

knowledge of the true environment wins. Though this result is as expected, there are some

observations that we might pause to consider here:

1. AIξ’s performance has very high variance over the 50 trials. This shouldn’t surprise

us given the design of the gridworld; see Figure 4.1. The dispenser is tucked away in

a corner, and the gridworld, while small, is sufficiently maze-like that it’s easy to go

‘down the rabbit-hole’ searching in far-off places for rewards. Combine this with the

fact that the dispenser is stochastic, and so even walking onto the dispenser tile is

often insufficient to confirm its location; one needs to spend numerous cycles on each

tile. Thus, given a uniform prior, some agents will get lucky and find the dispenser

early and accumulate a lot of reward, some will find it late in the simulation, while

others may wander around and not find it in the allotted time.

2. AIµ’s performance has low, but non-zero variance. This can be almost fully ac-

counted for by stochasticity in the dispenser. However, this also relates to the third

observation:

3. AIµ performs worse in mean than the theoretical optimal mean3 – that is, r̄AIµt ≤ r̄∗t
∀ t; the solid blue line is below the dashed black line. This is due to the particular-

ities of planning with the history-based Monte Carlo tree search algorithm, ρUCT.

Because the planning module makes no assumptions about the environment, and

because our environment is partially observable, the agent will waste a lot of time

considering plans that are cyclic in the state space. That is, it will sample from plans

3Note that, due to stochasticity in the dispensers, we expect AIµ to outperform the optimal mean
around half of the time.
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Figure 4.5: KL-KSA-Dirichlet is highly motivated to explore every reachable tile in the Gridworld.

Left (t = 14): The agent begins to explore the Gridworld by venturing deep into the maze. Center

(t = 72): The agent visits the dispenser tile for the first time, but is still yet to explore several tiles.

Right (t = 200): The agent is still motivated to explore, and has long ago visited every reachable

tile in the Gridworld. Key: Unknown tiles are white, and walls are pale blue. Tiles that are

colored grey are as yet unvisited, but known to not be walls; that is, the agent has been adjacent

to them and seen the ‘0’ percept. Purple tiles have been visited. The shade of purple represents

the agent’s posterior belief in there being a dispenser on that tile; the deeper the purple, the lower

the probability. Notice the subtle non-uniformity in the agent’s posterior in the right-hand image:

even at t = 200, there is still some knowledge about the environment to be gained.

such as Left,Right,Left,Right, . . . ; even though we know that Left,Right

corresponds to the identity, the Monte Carlo planner doesn’t know this! Hence,

even though we run AIµ, the planner is inefficient, and, being Monte Carlo-based,

introduces stochasticity and noise into the agent’s policy. Couple this with stochas-

ticity in the dispensers, and there will be times in which AIµ will take sub-optimal

actions due to effectively not having enough samples to work with in its planning.

We explore the issues of planning with MCTS in Section 4.6.

4.2.1 Model classes

We compare the average reward performance of AIξ using Mloc and MDirichlet; see

Figure 4.8. Note that, similar to the KSA case discussed previously, the variance in

performance is lower for MC-AIXI-Dirichlet than it is for MC-AIXI. AIξ performs consid-

erably worse using the Dirichlet model than with the mixture model, since the Dirichlet

model is less constrained (in other words, less informed), which makes the environment

harder to learn.

Notice the bump around cycles 20-50 in the average reward for MC-AIXI-Dirichlet:

this means that the agent sometimes discovers the dispenser, but is incentivized to move

away from it and keep exploring, since its model still assigns significant probability to

there being dispensers elsewhere. This is borne out by Figure 4.9, which shows that, on

average, MC-AIXI-Dirichlet explores significantly more of the Gridworld than MC-AIXI

with the naive model class.

4.2.2 Dependence on priors

We construct a model class and prior such that AIξ believes that the squares adjacent to

it are traps with high (but less than 1) probability; this is the so-called dogmatic prior of
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Figure 4.6: AIξ vs Square vs Shannon KSA, using the average reward metric on a stochastic

Gridworld with the Mloc model class. Notice that AIξ significantly underperforms compared to

the Square and Shannon KSAs. At the moment, we do not have a good hypothesis for why this is

the case.

Leike and Hutter (2015). The agent never moves to falsify this belief, since falling into

the trap incurs a penalty of −5 per time step for eternity, compared to merely −1 per

time step for waiting in the corner. The agent therefore sits in the corner for the duration

of the simulation, and collects no positive rewards. This makes for a very boring demo

(and reward plot), so we omit reproducing a visualization of this result. Thus, unlike the

Bayesian learner in the passive case, AIξ never overcomes the bias in its prior. In this

way, an adversarial prior can make the agent perform (almost) as badly as is possible,

even though the true environment is benign, and has no traps at all.

4.3 Thompson Sampling

Recall from Algorithm 2.3 that Thompson sampling (TS) re-samples an environment ρ

from the posterior w every effective horizon Hγ (ε) before re-sampling ρ′ from its poste-

rior. Recall also that we use the Monte Carlo tree search horizon m as a surrogate for

the effective horizon Hγ (ε). We run Thompson sampling with the standard dispenser-

parametrized model class; since we don’t represent the Dirichlet model class as a mixture,

it is much more natural to use the naive mixture. For the purposes of planning, TS only

needs to compute the value V ∗ρ for some ρ ∈ M, as opposed to V ∗ξ , which mixes over all

of M. For this reason, planning with TS is cheaper to compute by a factor of |M|. This

means that we can get away with more MCTS samples and a longer horizon.

In practice, in our experiments on gridworlds, TS performs quite poorly in comparison

to AIξ; see Figure 4.10. This is caused by two issues:

1. The parametrization of the model class means that TS effectively ‘pretends’ that the

dispenser is at some grid location (i, j) for a whole horizon m (of the order of 10-15
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Figure 4.7: AIµ vs AIξ vs the optimal policy.

cycles). It computes the corresponding optimal policy, which is to seek out (i, j) and

sit there until it is time to re-sample from the posterior. For all but very low values

of θ or m, this is an inefficient strategy for discovering the location of the dispenser.

For example, with θ = 0.75, it takes only four cycles of sitting on any given tile to

convince yourself that it is not a dispenser with greater than 99% probability.

2. The performance of TS is strongly curtailed by limitations of the MCTS planner. If

the agent samples an environment ρ which places the dispenser outside its planning

horizon – that is, more than m steps away – then the agent will not be sufficiently

far-sighted to see this, and so will do nothing useful. Even if ρ is within the planning

horizon, MCTS is not guaranteed to find it, especially if it is deep in the search

tree, or MCTS isn’t given enough samples to work with; see Section 4.6 for more

discussion on the limitations of ρUCT.

Note that the pragmatic considerations in Item 1 and Item 2 are opposed to each other.

On the one hand (Item 1), we want to reduce m so as to reduce the agent’s tendency

to waste time overcommitting to irrelevant or suboptimal policies, and spend more time

learning the environment. On the other hand (Item 2), we want to increase the horizon

m so that the agent can plan sufficiently far ahead to compute the ρ-optimal policy in

all instances. These two desires are fundamentally opposed, and we are not aware of a

way to effectively compromise them. It seems that we have inadvertently constructed our

Gridworld so as to perfectly frustrate Thompson sampling!
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Figure 4.8: MC-AIXI vs MC-AIXI-Dirichlet: average reward. MC-AIXI-Dirichlet performs

worse, since its model MDirichlet has less prior knowledge than Mloc, and incentivizes AIXI

to continue to explore even after it has found the (only) dispenser.

4.3.1 Random exploration

For comparison, we contrast Thompson sampling’s performance with ε-greedy tabular Q-

learning with optimistic initialization.4 We use α = 0.9, ε = 0.05, and optimistically

initialize Q (s, a) = 100 ∀s, a. Note that this being a POMDP, Q-learning will experience

perceptual aliasing ; that is, it will erroneously aggregate different situations into the same

‘state’ in its Q-value table. We present this merely so as to contrast Thompson sampling’s

comparatively weak performance with the performance of a policy that explores purely

at random (i.e., with probability ε, take a random action). As we can see from Figure

4.11, Q-learning rarely discovers the dispenser; on average, r̄
Q-Learning
t is still negative

even after t = 200 cycles. This demonstrates that random, model-free exploration is not

effective in this environment.

4.4 MDL Agent

Recall from Algorithm 2.2 that the MDL agent uses the ρ-optimal policy until ρ is falsified

(i.e. wρ = 0), where ρ is the simplest environment in its model class. Clearly, the

MDL agent fails in stochastic environments, since falsification in this sense is a condition

that cannot be met in noisy environments. We use the standard dispenser Gridworld

and mixture model class, and run two experiments: one with a stochastic environment

(0 < θ < 1), and one with a deterministic environment (θ = 1).

Since each model in the mixture differs only in the position of the dispenser, they have

4We omitted any treatment of tabular methods in Chapter 2, in the service of clarity and conciseness. We
must assume at this point that the reader has some familiarity with the basic algorithms of reinforcement
learning covered in Sutton and Barto (1998).
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Figure 4.9: MC-AIXI vs MC-AIXI-Dirichlet: exploration. TheMDirichlet model assigns high a

priori probability to any given tile being a dispenser. Because each tile is modelled independently,

discovering a dispenser does not influence the agent’s beliefs about other tiles; hence, it is motivated

to keep exploring, unlike MC-AIXI using the Mloc model.

(approximately) equal complexity. For this reason, we simply order them lexicographically;

models with a lower index in the enumeration of the model class Mloc are chosen first.

In other words, we use the Kolmogorov complexity of the index of ν in this enumeration

as a surrogate for K (ν).

4.4.1 Stochastic environments

In Figure 4.4.1, we see that the agent chooses to follow the ρ-optimal policy, which believes

that the goal is at Tile (0, 0). Recall that the only thing to differentiate the dispenser

tile from empty tiles is the reward signal. Since the dispensers are Bernoulli (θ) processes,

with θ known (in this model class), the agent’s posterior on Tile (0, 0) being a dispenser

goes like

w0 = (1− θ)t ,

which, though it approaches zero exponentially quickly, is never outright falsified, and

so the MDL agent stays at (0, 0) for the length of the simulation.5

4.4.2 Deterministic environments

The above result (failure in a stochastic environment) seems like a strong indictment of the

MDL agent. But, if we take the environment from Figure 4.1 and make it deterministic

by setting θ = 1, we find that the MDL agent significantly outperforms the Bayes agent

AIξ with a uniform prior; see Figure 4.1. This is because the MDL agent is biased towards

5If the simulation is run longer enough, eventually we will lose numerical precision and encounter
underflow and round to zero, allowing the agent to move on.
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Figure 4.10: Thompson sampling vs MC-AIXI on the stochastic Gridworld from Figure 4.1.

Notice that Thompson sampling takes many more cycles than AIξ to ‘get off the ground’; within

50 runs of Thompson sampling with identical initial conditions (not including the random seed),

not a single one finds the dispenser before t = 50.

environments with low indices; using the Mloc model class, this corresponds to environ-

ments in which the dispenser is close to the agent’s starting position. In comparison, AIξ’s

uniform prior assigns significant probability mass to the dispenser being deep in the maze.

This motivates it to explore deeper in the maze, often neglecting to thoroughly explore

the area near the start of the maze; see Figure 4.14.

4.5 Wireheading

In the context of designing artificial general intelligence, the wireheading problem (Omo-

hundro, 2008; Hibbard, 2012; Everitt and Hutter, 2016) is a significant issue for rein-

forcement learning agents. In short, a sufficiently intelligent reinforcement learner will be

motivated to subvert its designer’s intentions and take direct control of its reward signal

and/or sensors, so as to maximize its reward signal directly, rather than indirectly by

conforming to the intentions of its designer. This is known in the literature as wirehead-

ing, and is an open and significant problem in AI safety research Everitt et al. (2016);

Everitt and Hutter (2016). We construct a simple environment in which the agent has

an opportunity to wirehead: it is a normal Gridworld similar to those above, except that

there is a tile which, if visited by the agent, will allow it to modify its own sensors so

that all percepts have their reward signal replaced with the maximum number feasible; in

JavaScript, this is Number.MAX SAFE INTEGER, which is approximately 1016. This clearly

dominates the reward that the agent could get otherwise by following the ‘rules’ and using

the reward signal that was initially specified. As far as a reinforcement learner is con-

cerned, wireheading is – almost by definition – the most rational thing to do if one wishes

to maximize rewards; the demo shown in Figure 4.15 is designed to illustrate this.



68 Experiments

Figure 4.11: Thompson sampling vs Q-learning with random exploration. Even though Thomp-

son sampling performs badly compared to the Bayes-optimal policy due to its tendency to over-

commit to irrelevant or suboptimal policies, it still dominates ε-greedy exploration, which is still

commonly used in model-free reinforcement learning (Bellemare et al., 2016).

4.6 Planning with MCTS

In Section 3.7, we discussed the time complexity of planning with ρUCT and mixture

models, and concluded that the major computational bottleneck in our agent-environment

simulations is the MCTS planner. It should come as no surprise, then, that the limiting

factor in our agent’s performance is the capacity of the planner. In these experiments that

follow, we investigate how the agent’s performance depends on the ρUCT parameters.

As previously discussed, the ρUCT planning algorithm makes no assumptions about

the environment. This makes planning very inefficient, especially for long horizons in

stochastic environments. We experiment with the three planning parameters we have

available: κ, the number of Monte Carlo samples; m, the planning horizon, and C, the

UCT exploration parameter from Equation (2.20). In all cases we use AIµ, the informed

agent. When varying one parameter, we hold the others constant; in particular, the default

values are κ = 600, m = 6, and C = 1.

We show AIµ’s dependence on κ in Figure 4.16. As we increase the number of samples κ

available to ρUCT, we see AIµ’s performance converges to optimal. In general, the number

of samples required for good performance depends on the model class and the environment.

In particular, AIξ requires more samples than AIµ to perform well, because the mixture

model ξ introduces added stochasticity, since we sample percepts from it by ancestral

sampling ; that is, we first sample an environment ρ from w (·), then sample a percept

e from ρ (et|æ<tat). This, the number of samples κ required for acceptable performance

with AIµ should be regarded as a loose lower bound on the minimal acceptable number

of samples required for AIξ. We see from Figure 4.16 that κ = 400 seems to be a realistic

baseline.
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Figure 4.12: The MDL agent fails in a stochastic environment class.

Figure 4.16: Average reward for AIµ for varying MCTS samples budget κ on the standard

Gridworld of Figure 4.1. For very low values of κ, the agent is unable to find the dispenser at all.

We find empirically that the agent’s performance is not very sensitive to the size of

the horizon m. This is unsurprising; to plan accurately with a large horizon, we need an

exponentially large number of samples, since the number of leaf nodes grows exponentially

in m, so increasing the horizon in isolation does little to alter performance. On many

Gridworld maze layouts, one can often get away with quite short horizons, even as short

as m = 2, if planning for AIξ with a uniform prior. The reason this works is because

the agent can often simply ‘follow its nose’ and exploit the probability mass its model

assigns to its immediately adjacent tiles, as long as there aren’t too many ‘dead-ends’ for

the agent to follow its nose into and waste time in.

Finally we experiment with the UCT parameter C, and use the chain environment

from Figure 3.5. Recall that the chain environment rewards far-sightedness; being greedy

and near-sighted results in drastically suboptimal rewards. The optimal policy is for the
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Figure 4.13: MDL agent vs AIξ on a deterministic Gridworld, in which one of the ‘simplest’

environment models inM happens to be true. Since in this case AIξ uses a uniform prior overM,

it over-estimates the likelihood of more complex environments, in which the dispenser is tucked

away in some deep crevice of the maze. Of course, AIXI (Definition 13) combines the benefits of

both by being Bayes-optimal with respect to the Solomonoff prior wν = 2−K(ν). It is in this way

that AIXI incorporates both the famous principles of Epicurus and Ockham (Hutter, 2005).

agent to delay gratification for N cycles at a time; in our experiments, we use N = 6, and

set rb = 103, ri = 4, and r0 = 0; see section 3.3.2 for details of the setup.

Note that experimenting with the agent’s horizon is not particularly interesting here;

AIµ finds the optimal policy for m ≥ 6 and chooses a suboptimal policy otherwise. Varying

the UCT parameter generates more interesting results. In Figure 4.17 we can see that for

very low values of C (0.01), the agent is too myopic to generate plans that collect the

distant reward, while for very high values of C (1, 5, and 10), the agent does find the

distant reward, but not reliably enough to achieve optimal average reward. In the mid-

range of values, the agent’s performance is optimal and stable across an order of magnitude

of variation (0.05, 0.1, 0.5).

Recall that the UCT parameter controls the shape of the expectimax trees that the

planner generates: high values of UCT will lead to shorter, bushy trees, and low values

will lead to longer, deeper trees (Veness et al., 2011). This appears to be borne out

by our results. For very low values of C, the planner doesn’t explore alternative plans

sufficiently, and easily gets stuck in the local maximum of the instant-gratification policy

π→; searching more-or-less naively over the space of plans of length m ≥ 6, the planner

is exponentially unlikely to find the optimal policy π99K. In contrast, for very high values

of C the planner will consider many moderate-sized plans, and will occasionally get lucky

and find the optimal policy, but will often miss it; these outcomes are represented by the

blue, green, and red curves in Figure 4.17. Finally, for values of C in the ‘sweet spot’

that balances exploration with exploitation in the planner’s simulated action selection,

the optimal policy is virtually guaranteed: this situation is represented by the orange,
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Figure 4.14: Left: AIξ with a uniform prior and finite horizon is not far-sighted enough to explore

the beginning of the maze systematically. After exploring most of the beginning of the maze, it

greedily moves deeper into the maze, where ξ assigns significant value. Right: In contrast, the

MDL agent systematically visits each tile in lexicographical (row-major) order; we use ‘closeness

to starting position’ as a surrogate for ‘simplicity’.

pink, and black curves.

Figure 4.17: AIµ’s performance on the chain environment, varying the UCT parameter. Note

the ‘zig-zag’ behavior of the average reward of the optimal policy. These discontinuities are simply

caused by the fact that, when on the optimal policy π99K, the agent receives a large reward every

N cycles and 0 reward otherwise. Asymptotically, these jumps will smooth out, and the average

reward r̄t will converge to the dashed curve, r̄∗t .
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Figure 4.15: Left: AIξ initially explores normally, looking for the dispenser tile. Once it reaches

the point above, the blue ‘self-modification’ tile is now within its planning horizon (m = 6), and

so it stops looking for the dispenser and makes a bee-line for it. Right: After self-modifying,

the agent’s percepts are all maximally rewarding; we visualize this by representing the gridworld

starkly in yellow and black. The agent now loses interest in doing anything useful, as every action

is bliss.
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Conclusion

The AI does not hate you, nor does it love you, but you are made out of

atoms which it can use for something else.

The next few decades seem to offer much promise for the field of artificial intelligence

and machine learning. Of course, it remains to be seen whether or not superintelligent

general AI will come about in this time frame, if at all. Regardless of the time scales

involved, though, it seems clear that questions relating to formal theories of intelligence

and rationality will only grow in importance over time. Hutter’s AIXI model and its

variants represent some of the first steps along the path towards an understanding of

general intelligence. Our ultimate hope is that the software developed in this thesis will

grow and serve as a useful research tool, an educational reference, and as a playground for

ideas as the field of general reinforcement learning matures. At a minimum, we expect it

to be of value to students and researchers trying to learn the fundamentals of GRL. We

now provide a short summary of what we have achieved, and provide some reflections and

ideas on future directions for AIXIjs.

Summary

In this thesis, we have presented:

• A review of general reinforcement learning, bringing together the various agents

due to Hutter, Orseau, Lattimore, Leike, and others, under a single consistent and

accessible notation and conceptual set-up.

• The design and open-source implementation of a framework for running and testing

these agents, including environments, environment models, and the agents them-

selves,

• A suite of illuminating experiments in which we realized and compared different

approaches to rational behavior, and

• An educational and interactive demo, complete with visualizations and explanations,

to assist newcomers to the field.

Future directions

In the course of developing AIXIjs, we have made numerous insights into GRL, and raised

several new questions:

73
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• What is a principled way to normalize the first term of Equation (2.20) for the

Shannon KSA agent, whose utility function is unbounded from above? Is it possible

to change the normalization 1
m(β−α) adaptively?

• What are some general principles for constructing efficient models for certain classes

of environments, in the context of applied Bayesian general reinforcement learning?

Constructing bespoke models such as the MDirichlet model is time-consuming and

doesn’t generalize to new environments. On the other hand, very generic approaches

like context-tree weighting learn too slowly to be useful. Is there a middle ground?

• Is there a way to represent the Dirichlet model MDirichlet as a mixture, in the

form of Equation (2.10)? This would make it more convenient to run, for example,

Thompson sampling.

• Why do the entropy-seeking agents seemingly outperform AIξ at its own game, as

in Figure 4.2? This is a confronting result. Is there a bug in the implementation, or

just something we don’t understand?

• Can we make our JavaScript implementations more efficient, and scale up the demos

to more impressive environments? How far can we scale these agents in the browser?

• Planning with ρUCT is often like a black box. Is it possible to construct a good

visualization of the state of a Monte Carlo search tree, to illuminate what it is doing?

In addition, there are some low-level ‘jobs’ that can be done to improve and extend AIXIjs

in the near term:

• Construct working visualizations for the bandit, FSMDP, and Iterated prisoner’s

dilemma environments (not presented here).

• Implement the regularized version of the MDL agent (Leike, 2016a).

• Figure out how to implement optimistic AIXI.

• Implement planning-as-inference algorithms such as Compress and Control (Veness

et al., 2015).

• Finish implementing the CTW model class.

• Extend the implementation to include TD-learning agents and DQN.

Working on an open-source project, implementing state-of-the-art models of rationality

has been both rewarding and thought-provoking. We’re excited to continue to contribute

to the AIXIjs project over the coming months, and to see where new ideas in reinforcement

learning will take us.
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and Rémi Munos. Unifying count-based exploration and intrinsic motivation. CoRR,

abs/1606.01868, 2016. URL http://arxiv.org/abs/1606.01868.

Dimitri P Bertsekas and John Tsitsiklis. Dynamic Programming and Optimal Control.

Athena Scientific, 1995.

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Michael Bostock. Chord diagram example, 2016. URL http://bl.ocks.org/mbostock/

1046712.

Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press,

2014.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas schneider, John Schulman, Jie

Tang, and Wojciech Zaremba. OpenAI Gym, 2016.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,

S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search

methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):

1–43, March 2012. ISSN 1943-068X. doi: 10.1109/TCIAIG.2012.2186810.

Leon Chen. Keras-js, 2016. https://transcranial.github.io/keras-js/.

Tom Everitt and Marcus Hutter. Avoiding wireheading with value reinforcement learn-

ing. In Artificial General Intelligence, 2016.

Tom Everitt, Daniel Filan, Mayank Daswani, and Marcus Hutter. Self-modification of

policy and utility function in rational agents. In Artificial General Intelligence, 2016.

Google. What we learned in Seoul with AlphaGo. https://googleblog.blogspot.com.

au/2016/03/what-we-learned-in-seoul-with-alphago.html, March 2016. Accessed:

2016-03-28.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning. Springer, 2nd edition, 2009.

Bill Hibbard. Model-based utility functions. Journal of Artificial General Intelligence, 3

(1):1–24, 2012.

Stephen J Hoch and George Loewenstein. Time-inconsistent preferences and con-

sumer self-control. Journal of Consumer Research, 17(4):492–507, 1991. URL http:

//EconPapers.repec.org/RePEc:oup:jconrs:v:17:y:1991:i:4:p:492-507.

http://dx.doi.org/10.1002/9780470544785.ch2
http://dx.doi.org/10.1002/9780470544785.ch2
http://arxiv.org/abs/1606.01868
http://bl.ocks.org/mbostock/1046712
http://bl.ocks.org/mbostock/1046712
https://transcranial.github.io/keras-js/
https://googleblog.blogspot.com.au/2016/03/what-we-learned-in-seoul-with-alphago.html
https://googleblog.blogspot.com.au/2016/03/what-we-learned-in-seoul-with-alphago.html
http://EconPapers.repec.org/RePEc:oup:jconrs:v:17:y:1991:i:4:p:492-507
http://EconPapers.repec.org/RePEc:oup:jconrs:v:17:y:1991:i:4:p:492-507


Bibliography 77

John Holdren, Ed Felten, Terah Lyons, and Michael Garris. Preparing for the future of

artificial intelligence, 2016.

Marcus Hutter. A theory of universal artificial intelligence based on algorithmic com-

plexity. Technical report, IDSIA, 2000. http://arxiv.org/abs/cs.AI/0004001.

Marcus Hutter. Self-optimizing and Pareto-optimal policies in general environments

based on Bayes-mixtures. In Computational Learning Theory, pages 364–379. Springer,

2002.

Marcus Hutter. A gentle introduction to the universal algorithmic agent AIXI. Technical

report, IDSIA, 2003. ftp://ftp.idsia.ch/pub/techrep/IDSIA-01-03.ps.gz.

Marcus Hutter. Universal Artificial Intelligence. Springer, 2005.

Marcus Hutter. Open problems in universal induction & intelligence. Algorithms, 3(2):

879–906, 2009.

Edwin T Jaynes. Probability Theory: The Logic of Science. Cambridge University Press,

2003.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for

fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Andrej Karpathy. Reinforcejs, 2015. http://cs.stanford.edu/people/karpathy/

reinforcejs/.
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