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Why are we here?

AIXI [1] proposes an answer to the following question:

What is optimal behavior in general unknown environments?

In this part we’ll give some scaled down examples and
conceptual intuitions about what this means.
These slides can be found at
aslanides.io/docs/aixi_tutorial.pdf.

http://aslanides.io/docs/aixi_tutorial.pdf
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RL Setting & Notation

Environment is an unknown, non-ergodic, partially
observable MDP.

Symbol Description Example
a ∈ A Action {↑, ↓,←,→, . . . }, N, . . .

o ∈ O Observation RN , B?, , . . .
r ∈ R Reward R, Z, . . .
e ∈ E Percept O ×R (definition)
µ ∈M Environment gridworld, robotics, . . .

π ∈ ∆ (A) Policy ε-greedy, random, . . .
æ<t ∈ (A× E)? History a1o1r1 . . . at−1ot−1rt−1
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RL Setting & Notation

Agent and environment interact using the standard RL setup:

Agent

Environment

atet
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Optimal policy (“Just do the best thing”)

Optimal state-action value in environment µ at time t
given history æ<t is given by

Q∗µ(at |æ<t) = sup
π

Eµ

[ ∞∑
k=t

γk rk |π,æ<tat

]

Optimal value:

V ∗µ (æ<t) = max
at∈A

Q∗µ (at |æ<t)

Optimal policy is greedy, breaking ties at random:

π∗µ (at |æ<t) = arg max
a

Q∗µ (a|æ<t)
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Optimal value

Optimal value in environment µ at time t given history æ<t is
given by

V ∗µ (æ<t) = lim
m→∞

max
at

∑
et

· · ·max
am

∑
em

t+m∑
k=t

γk rk

k∏
j=t

µ (ej |æ<jaj).

Likelihood of percepts et:k given action sequence a1:k .
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Optimal value

Optimal value in environment µ at time t given history æ<t is
given by

V ∗µ (æ<t) = lim
m→∞

max
at

∑
et

· · ·max
am

∑
em

t+m∑
k=t

γk rk

k∏
j=t

µ (ej |æ<jaj).

Likelihood of percepts et:k given action sequence a1:k .
Discounted return realized by the trajectory et:t+m.
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Optimal value

Optimal value in environment µ at time t given history æ<t is
given by

V ∗µ (æ<t) = lim
m→∞

max
at

∑
et

· · ·max
am

∑
em

t+m∑
k=t

γk rk

k∏
j=t

µ (ej |æ<jaj).

Likelihood of percepts et:k given action sequence a1:k .
Discounted return realized by the trajectory et:t+m.
Expectimax up to horizon m.
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Optimal value

Optimal value up to horizon m:

V ∗µ,m(æ<t) = max
at

∑
et

· · ·max
am

∑
em

t+m∑
k=t

γk rk

k∏
j=t

µ (ej |æ<jaj).
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Optimal value

Optimal value up to horizon m:

V ∗µ,m(æ<t) = max
at

∑
et

· · ·max
am

∑
em

t+m∑
k=t

γk rk︸ ︷︷ ︸
"Planning"

k∏
j=t

µ (ej |æ<jaj)︸ ︷︷ ︸
"Learning"

.
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Planning

We can approximate the expectimax computation of V ∗µ,m
with a variant of Monte-Carlo Tree Search (MCTS).
Example use: playing Chess, Go, Shogi (AlphaZero) [2].
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Planning

Algorithm: ρUCT [3], an extension of UCT [4] to
histories.

Idea: Only expand subtrees that show promising rewards
and/or high uncertainty.
Trade off reward with uncertainty using a tree-based
variant of the UCB algorithm [5]:

aUCT ∈ arg max
a∈A

 Q̂ (a|æ<t)︸ ︷︷ ︸
Value estimate

+ C
√

log T (æ<t)
T (æ<ta)︸ ︷︷ ︸

Exploration bonus

 ,

where T (·) is the number of times a sequence has been
visited.
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Learning

Agent doesn’t know µ a priori.

Recall the incomputable Solomonoff model class

M (e<t |a<t) =
∑

p
2−`(p) Jp (a<t) = e<tK

Introduce a finite model classM:

ξ (et |æ<tat) =
∑
ν∈M

wνν (et |æ<tat)

Update posterior wν with Bayes rule:

wν ←
ν (et)
ξ (et) wν ∀ν ∈M

For very smallM we can compute this exactly.
Let’s look at this with some toy examples.
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Gridworld example

Consider a class of gridworlds:

The world is a procedurally generated N × N maze:

The agent is a robot with A = {←,→, ↑, ↓, ∅}.

The grey tiles are walls that yield −5 reward if hit.

The white tiles are empty, but moving costs −1.
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Gridworld example

The orange circle looks like an empty tile, but
randomly dispenses +100 each step with some fixed
probability θ.

The agent has O
(
N2) steps to live.

e.g. 200 steps on 10× 10 grid.

The observations consist of just four bits, O = B4:

This is a stochastic & partially observable environment
with simple & easy-to-understand dynamics [3].
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Simple model class

Let the agent know:

Maze layout
Dispenser probability θ
Environment dynamics.

Let it be uncertain about where the only dispenser is:

M = {Gridworld with dispenser at (x , y)}(N,N)
(x ,y)

There are at most |M| ≤ N2 ‘legal’ dispenser positions.
Let the agent have a uniform prior wν = |M|−1 ∀ν ∈M.
Each ν is a complete gridworld simulator, and µ ∈M.
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AIXIjs

Enough talk. Let’s see an

Online web demo

aslanides.io/aixijs

http://aslanides.io/aixijs
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Simple model class

What did we just see?
Let’s visualize the agent’s uncertainty as it learns.

Initially, the agent has a uniform prior, shown in green.
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Simple model class

Let’s visualize the agent’s uncertainty as it learns.

After exploring a little, the agent’s beliefs have changed.
Lighter green corresponds to less probability mass.
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Simple model class

Let’s visualize the agent’s uncertainty as it learns.

After discovering the dispenser, the agent’s posterior
concentrates on µ.
This concentration is immediate – global ‘collapse’.
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A more general model class

The previous model class was limited. Here’s a more
interesting one.

Model each tile independently with a categorical/Dirichlet

distribution over
{

, ,
}
:

ρ (et |. . . ) =
∏

s′∈ne(st)
Dirichlet (p|αs′) .

Joint distribution factorizes over the grid.
The agent learns about state dynamics only locally,
rather than globally.
Using this model, the agent is uncertain about:

Maze layout
Location, number and payout probabilities θi of each
dispenser(s).



AIXI Tutorial
Part II

John Aslanides
and Tom
Everitt

Short Recap

Approximations

(Break)

Variants of AIXI

23/41

A more general model class

What did we just see?
Let’s visualize the agent’s uncertainty as it learns.

Initially the agent knows nothing about the layout.
There are two dispensers, visualized for our benefit.
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A more general model class

Let’s visualize the agent’s uncertainty as it learns.

Tiles that the agent knows are walls are blue .

Purple tiles show the agent’s belief of θ.
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A more general model class

Let’s visualize the agent’s uncertainty as it learns.

Note: the smaller has lower θ than the larger .
The agent explores efficiently and learns quickly.
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A more general model class

Let’s visualize the agent’s uncertainty as it learns.

Even so, the agent settles for a locally optimal policy.
Due to its short horizon m, it can’t see the value in
exploring further.
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Exploration/exploitation trade-off

Here we see the classic exploration/exploitation dilemma.
Bayesian agents are not immune to this!
Choices of:

model class
priors
discount function
planning horizon

are all significant!
Corollary: AIξ is not asymptotically optimal.
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(Aside) An even more general model class

We’ve demonstrated Bayesian RL on gridworlds using
very domain-oriented model classes.

Is there something more general that is still tractable?
Yes! The Context-Tree Weighting (CTW) algorithm:

A data compressor with good theoretical guarantees.
Mixes over all < k th-order (in bits) Markov models.
Automatically weights models by complexity (tree depth).
Model updates in time linear in k.
Based on the KT estimator (similar to Beta distribution).
Can model any sequential density up to a finite given
context/history length.
Learns to play PacMan, Tic-Tac-Toe, Kuhn Poker, and
Rock/Paper/Scissors tabula rasa [3].
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Break Time

Let’s take a tea/coffee break!
(See you again in 30 mins)
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Variants of AIξ

We’ll discuss various variants of AIXI and their links with
‘model-free’/‘deep RL’ algorithms:

MDL Agent

Thompson Sampling
Knowledge-Seeking Agents
BayesExp
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MDL Agent

Minimum Description Length (MDL) principle: prefer
simple models

Another take on the ‘Occam principle’:

ρ = arg min
ν∈M

K (ν)− λ log
t∏

k=1
log ν (ek |æ<kak)︸ ︷︷ ︸

Log-likelihood



In deterministic environments: “use the simplest
yet-unfalsified hypothesis”
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Thompson Sampling

Recall the Bayes-optimal agent (AIξ) maximizes
ξ-expected return:

aAIξ = arg max
a

Q?
ξ (a|æ<t)

= arg max
a

max
π

Eπξ

[ ∞∑
k=t

γk rk

∣∣∣∣∣æ<ta
]

A related algorithm is Thompson sampling).
Idea: Instead of maximizing the ξ-expected return:

maximize the ρ-expected return, ρ drawn from w (·|æ<t).
resample ρ every ‘effective horizon’ given by discount γ.

Good regret guarantees in finite MDPs [1]
Asymptotically optimal in general environments [2].
Intuition: ‘commits’ the agent to a given belief/policy for
a significant amount of time,

this encourages ‘deep’ exploration.
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Thompson Sampling

‘Deep RL’ version: Deep Exploration via Bootstrapped
DQN [2].

Idea: Maintain an ensemble of value functions
{Qk (s, a)}.

Train these using e.g. DQN using the statistical
bootstrap.
Thompson sampling: draw a Q-function at random each
episode and use a greedy policy.
Exhibits much better exploration properties than many
alternatives
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Knowledge-Seeking Agents

It has long been thought that some form of intrinsic
motivation, surprise, or curiosity is necessary for
effective exploration and learning [5].

Knowledge-seeking agents (KSA) take to this to the
extreme:

Fully unsupervised (no extrinsic rewards)
Utility function depends on agent beliefs about the world
Exploration ≡ Exploitation

Two forms:

Shannon KSA (“surprise”):

U (et |æ<tat) = − log ξ (et |æ<tat)

Kullback-Leibler KSA (“information gain”):

U (et |æ<tat) = Ent (w |æ<tat)− Ent (w |æ1:t)
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Fully unsupervised (no extrinsic rewards)
Utility function depends on agent beliefs about the world
Exploration ≡ Exploitation

Two forms:

Shannon KSA (“surprise”):

U (et |æ<tat) = − log ξ (et |æ<tat)

Kullback-Leibler KSA (“information gain”):

U (et |æ<tat) = Ent (w |æ<tat)− Ent (w |æ1:t)
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Knowledge-Seeking Agents

Kullback Leibler (“information-seeking”) is superior to
Shannon & Renyi (“entropy-seeking”):
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Knowledge-Seeking Agents

‘Deep RL’ version: Variational Information Maximization
for Exploration (VIME) [1].

Idea:

Learn a forward dynamics model in tandem with
model-free RL
Use a variational approximation to compute the
information gain in closed form
Use this as an ‘exploration bonus’, or intrinsic reward

Downside: only works well when learning from ‘states’,
not pixels (wrong loss).
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BayesExp

Combine best of both worlds:
Bayes-optimal reinforcement learner (AIξ) with

Information-seeking (KL-KSA).
Idea: switch between RL and KSA policies depending on
the relative sizes of VKSA and VRL.
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Thanks!

Thanks!
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